
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

tpjic^^m^0^01'^2

SYSTEM CONTROLLER HARDWARE AND
EMBEDDED SOFTWARE FOR THE PETITE

AMATEUR NAVY SATELLITE (PANSAT)

by

James Anthony Horning

September 1997

Thesis Advisor: Rudolf Panholzer
Co-Advisor: Randy L. Wight

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave
blank)

REPORT DATE
September 1997

3. REPORT TYPE AND DATES
COVERED
Master's Thesis

4. TITLE AND SUBTITLE System Controller Hardware and Embedded
Software for the Petite Amateur Navy Satellite (PANSAT)

6. AUTHOR(S) Horning, James Anthony

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis documents the design of the hardware and embedded software of a digital computer that provides
autonomous control of the PANSAT spacecraft. The system was designed for use during a two year mission in a low
earth orbit. The computer uses an Intel M80C186XL running at 7.3728 MHz, 512 kbytes of error-detection and
correction RAM, 64 kbytes of ROM, and standard CMOS components to provide a general purpose microcomputer.
The purpose of the computer is to control all subsystems of the spacecraft, perform analog-to-digital conversions,
orchestrate duplicate hardware components to provide redundancy, and upload new software from a ground station.
The hardware system was built on printed circuit boards which were manufactured by the Space System Academic
Group and tested for proper operation. The embedded software was coded using 80186 Assembler and the C
programming language, tested for proper operation, and placed into ROM as firmware.

14. SUBJECT TERMS PANSAT, Digital Computer, Embedded System, Device Drivers,
Spacecraft Control

15. NUMBER OF
PAGES 302

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS
PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

SYSTEM CONTROLLER HARDWARE AND EMBEDDED SOFTWARE

FOR THE PETITE AMATEUR NAVY SATELLITE (PANSAT)

James Anthony Horning

Naval Postgraduate School

B.S.C.S., California Polytechnic - San Luis Obispo, 1989

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Author:

Approved by:

SeptenXherl997

/ / James A. Horning
0 AjLdui

Rudolf Panholzer, Thesiä Advisor

Herschel H. Loomis, JK; Chairman

Department of Electrical and Computer Engineering

in

IV

ABSTRACT

This thesis documents the design of the hardware and embedded software of a digital computer

that provides autonomous control of the PANSAT spacecraft. The system was designed for use during a

two year mission in a low earth orbit. The computer uses an Intel M80C186XL running at 7.3728 MHz,

512 kbytes of error-detection and correction RAM, 64 kbytes of ROM, and standard CMOS components to

provide a general purpose microcomputer. The purpose of the computer is to control all subsystems of the

spacecraft, perform analog-to-digital conversions, orchestrate duplicate hardware components to provide

redundancy, and upload new software from a ground station. The hardware system was built on printed

circuit boards which were manufactured by the Space System Academic Group and tested for proper

operation. The embedded software was coded using 80186 Assembler and the C programming language,

tested for proper operation, and placed into ROM as firmware.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. Purpose 1
B. Scope 1

II. BACKGROUND INFORMATION 3
A. THE PANSAT PROJECT 3
B. MISSION LIFE AND OPERATING ENVIRONMENT 4

1. Thermal Environment 4
2. Operational Environment 5
3. Radiation Environment 5

C. RADIATION EFFECTS ON ELECTRONICS 5
1. Single Event Effects 5
2. Single Event Effects Experienced by PANSAT 6

D. DOCUMENTATION CONVENTIONS 6
1. Numbering 6
2. Signal Names 6
3. Logic Expressions 6
4. Software Flow Diagrams 7

III. PANSAT ELECTRONICS AND SOFTWARE OVERVIEW 9
A. DESIGN CONSTRAINTS AND TRADEOFFS 9
B. PANSAT SUBSYSTEM HARDWARE GENERAL DESCRIPTION 10
C. SYSTEM CONTROLLER ORGANIZATIONAL OVERVIEW 11

1. Hardware Organization 12
2. Software Organization 14

IV. SYSTEM CONTROLLER HARDWARE 17
A. MICROPROCESSOR 17

1. Reset Circuitry and Timing 17
2. Input Clock 17
3. Interrupts and Direct Memory Access 18
4. Memory and Chip Selects 19
5. Timers 20

B. POWER SENSING AND REGULATION 20
1. Power On Detection 20
2. DC-DC Conversion 22

C. PERIPHERAL DATA BUS 23
1. Programmable Peripheral Interface 23
2. Peripheral Control Bus (PCB) 23
3. Modem Control Interface 24
4. CPU Signal Isolation and Latching 25
5. Signal Timing to Modem Board 26

D.MEMORY 26
l.ROM 29
2. Error Detection and Correction 29

a. Existing Design 29
b. Modifications of the Write Back Control 29

VII

c. Modification of the Reset Circuitry 30
d. Modification of the EDAC Error Acknowledge 31
e. Modification of the Transceiver Enables 31

E. ANALOG-TO-DIGITAL CONVERSION ZZZZZZZZZZZZZZZl
1. A/D Converter 32
2. Analog Switch 32
3. Voltage Clamping and Low-pass Filter 33
4. Wiring 33
5. Connector 33
6. Temperature Sensing IC 34

F. SERIAL COMMUNICATIONS ZZZZZZZZZZZZZZZZZ34
1. Serial Communications Controller 34
2. RS-232 Drivers and Receivers 36
3. Connector 35

V. SYSTEM CONTROLLER SOFTWARE DRIVERS 37
A. DESCRIPTION 37

B. HIERARCHY AND MODULE RELATIONSHIPS 38
C. STARTUP .'..'.'.'.'.'.'.'.'.'.38

1. Hardware Initialization 39
2. Memory Check and Clear 40
3. Data Relocation 40
4. Floating Point Emulation 41
5. C Runtime 4j

D. CPU SUPPORT ZZZZZZZZZZZZZZZZZZZZZZZZZZZ.42
1. Timers and Interrupts 42

a. Timers 42
b. Interrupt Priority Structure 43

2. EDAC (Setup and RAM Wash) ZZZZZZZZZZZZZZZZZZ.44
a. Initial RAM Clearing 45
b. RAM wash ZZZZZZZZZZZZZZZZZZZ.45
c. Processing a Single Bit Error 46
d. Processing a Dual Bit Error 46

E. MAIN ZZZZZZZZZZZZZZZZ 46
F. PROGRAMMABLE PERIPHERAL INTERFACE ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ.4S

1. EDAC Control "."."'.'.4%
2. Peripheral Control Bus 48
3. PPI Control Interface 48
4. Peripherals of the Control Bus 48
5. Reading from the Control Bus 49
6. Writing to the Control Bus 49
7. Software Interface 49

a. Application Programming Interface 49
b. Timing Requirements 50

G. ELECTRICAL POWER SUBSYSTEM ZZZZZZZZZZZZZZZ.50
1. EPS Port Organization 50
2. EPS Cell Voltage Multiplexing 51

a. Low Banery Cell Voltage Selections 51
b. Medium Battery Cell Voltage Selections 51
c. High Battery Cell Voltage Selections 51

3. EPS Cell Voltage and Current Multiplexing 51
H. SERIAL COMMUNICATIONS ZZZZZZZZZZZZZZ.52

1. Modem Control 52
2. RF Control ZZZZZZZZZZZZZZZ.'.52

VIII

3. SCC Drivers 53
a. Asynchronous Services 54
b. Synchronous Services 54

I. TELEMETRY 54
1. Scheduling of the LM12H458 54
2. LM12H458 Setup and Interrupt Service Routines 55
3. Data Gathering - Temperature Multiplexers 57
4. Data Conversion 57

a. Battery Current Conversion 57
b. Spacecraft Bus Current Conversion 58
c. Battery Voltage Conversions 58
d. Thermistors 59
e. Temperature Sensors (ICs) 59

5. Data Recording 59
J. MASS STORAGE INTERFACE 60

1. Hardware Interface Via the PCB 60
2. Software Interface 61

a. Reading and Writing Requirements. .,. 62
b. API Functions 62
c. Timing Requirements 63

VI. SYSTEM CONTROLLER HIGH-LEVEL SOFTWARE 65
A. DESCRIPTION 65
B. SERIAL COMMUNICATIONS - Serial Test Port Interface 65
C. BATTERY CHARGE MONITOR 67

l.BCM Top Level 67
2. Battery Use Eligibility And Preference 69
3. Determine Online Battery 71
4. Determine Target Battery 73
5. Charging Methods 75

a. Overcharge 75
b. Recharge 76

6. Battery Mode 77
D. GROUND STATION COMMAND INTERFACE 78

1. Command Packet Protocol 78
2. Commands 79

a. Confirm 79
b. Control 79
c. Execute 79
d. Get Parameters 79
e. Load 79
f. Map 79
g. Reset 80
h. Set Parameters 80
i. Status 80
j. Status Log Clear 80
k. Status Log Read 80
1. Verify 80
m. Unknown 81

3. Loading Sequence 81
E. SCENARIO CHECKS 82

VII. RESULTS, RECOMMENDATIONS, AND CONCLUSION 83
A. RESULTS 83

IX

1. Printed Circuit Board 33
2. Use of In-Circuit Emulator 83
3. Software 84
4. Testing g5

B. RECOMMENDATIONS ZZZZZZZZZZZZZZZZZZZZ 85
C. CONCLUSION ZZZZZZZZZZZZ.S5

APPENDIX A. HARDWARE SCHEMATICS 87

APPENDIX B. SYSTEM CONTROLLER CONNECTOR PIN-OUTS 93

APPENDIX C. CIRCUIT BOARD BILL OF MATERIALS 97

APPENDIX D. PERIPHERAL CONTROL BUS PROGRAMMABLE
PERIPHERAL INTERFACE PORT CONFIGURATION 101

APPENDIX E. ELECTRICAL POWER SYSTEM PORT CONFIGURATION...103

APPENDIX F. A/D ACQUISITION 107

APPENDIX G. THERMISTOR TEMPERATURE CONVERSIONS 109

APPENDIX H. SPACECRAFT COMMAND ENCODING 113

APPENDIX I. SOFTWARE GENERATION FACILITIES 115

APPENDIX J. SOFTWARE SOURCE CODE 119

APPENDIX K. TEST PLANS 285

LIST OF REFERENCES 289

INITIAL DISTRIBUTION LIST 291

I. INTRODUCTION

A. Purpose
The purpose of this thesis is to document the design of a system that implements the digital

computer of the Petite Amateur Navy Satellite (PANSAT). PANSAT is an experimental, low cost,

lightweight, communications satellite that is currently being designed and built by officer students

supported by the Space Systems Academic Group at the Naval Postgraduate School in Monterey,

California. The design consists of the implementation details of the hardware as well as the low-level

software that is embedded within the system. The computer, called the System Controller, incorporates

error detection and correction memory for random-access memory, a read-only memory, specialized

synchronous and asynchronous serial communications, analog-to-digital conversion, a parallel digital bus

for subsystem control, and power detection and DC-DC conversion.

B. Scope
Chapter II provides background information which includes a general description of the PANSAT

project and its operational environment, radiation effects on electronic circuits, and general conventions

used when writing this document. The third chapter presents an overview of the organization of the

electronics of PANSAT, and a description of the hardware and software architectures of the System

Controller. Chapter IV discusses the hardware design in detail. The fifth chapter describes the software

device drivers design in detail and Chapter VI examines the higher-level software routines which use the

device drivers. Chapter VII examines the testing of the hardware and software, presents recommendations,

and ends with the conclusion. Several appendices follow containing the hardware schematics, the bill of

materials for the hardware, software block and flow diagrams, software source code, and software

generation facilities.

II. BACKGROUND INFORMATION

A. THE PANSAT PROJECT
The PANSAT project began in 1989 as an educational program for students at the Naval

Postgraduate School's (NPS) Space Systems Academic Group (SSAG). The project goal is to provide

meaningful and realistic research topics for students in the area of space systems engineering and space

systems operations. In doing so, the Space Systems Academic Group has prepared students for space

related tasks and has developed an infrastructure of facilities and personnel capable of developing space

qualified systems.

PANSAT is a small satellite for digital store-and-forward communications in the amateur

frequency band. It features a direct sequence spread spectrum differentially coded, binary phase shift keyed

(BPSK) communication system at an operating frequency of 436.5 MHz. The store-and-forward capability

will allow NPS and amateur radio operators to send or receive messages during several short

communication windows every day, each 4 to 8 minutes in duration.

The entire satellite structure weighs approximately 150 pounds, has a diameter of about 19 inches,

and is designed to be launched as a secondary pay load from the Space Shuttle via the Hitchhiker Program.

PANSAT is a 26-sided polyhedron, as shown in Figure 1, a configuration chosen to maximize solar panel

area and thus power generation. PANSAT is not stabilized and will tumble freely once put into space. The

satellite uses an omni-directional antenna system consisting of four quarter wave-length segments to

achieve near uniform signal coverage regardless of PANSAT's orientation while tunbling in space.

PANSAT requirements specify a two-year mission life in a low-earth orbit (LEO) with an

inclination between 28.5° and 90.0° [Ref. 1]. The Space Systems Academic Group has signed a

Memorandum of Agreement with NASA Space Test Flight programming, ensuring a future flight onboard

the Space Shuttle. Space Shuttle operational limits are altitudes between 203.7 km and 611.2 km and

inclinations between 28.5° and 57.0° [Ref. 2].

Antenna« {4)
Solar Pan«18 (5>

Upper
Equipment
Platform

Solar Panels (6)

Draltal Control
Suhsystmi (DCS)

Battary Box [2}

Supper t
Cylinder

Solar Pans Ig (4-}

Snlar Panel

Ma SB Storage
(a MB)

Ana Iag
Mux i ng

Electrical Pawflr
Subayetam (EPS)

Lower
Equipment
Platform

.adlo FreguBncy
RF) Ssctfon&Ud

kPA Heat Sink
Caver

Baeeplale

Mi craswiIch {3)
& Brachst

Figure 1. PANSAT Structure.

B. MISSION LIFE AND OPERATING ENVIRONMENT

1. Thermal Environment
Thermal analysis for temperatures of electronics inside PANSAT examines two situations: a hot

case and a cold case, depending on solar flux and Sun orientation, the Earth, and internal power dissipation

within the satellite. The cold case expects the temperature inside during operation to be between -15°C and

-6°C, and the hot case predicts temperatures from about-4°C to 13°C [Ref. 3]. While these temperatures

are well suited for the operation of integrated circuits (IC), the batteries prefer a warmer environment; this

will be addressed briefly in the section describing the Battery Charge Monitor, in Chapter VI.

2. Operational Environment
PANS AT electronics are expected to provide continuous operation throughout the life of the

satellite. Solar panels will provide sufficient energy during the sun-soak portion of an orbit to allow

continuous operations of the satellite and to store energy into the batteries for the eclipsed portion of the

orbit. The PANSAT System Controller design incorporates two redundant, mutually exclusive, system

controllers which are prevented from simultaneous operation because of the switching design within the

electrical power system (EPS).

3. Radiation Environment
In LEO, PANSAT will be significantly protected from cosmic radiation and the solar wind due to

the shielding effects of the Earth's magnetic field [Ref. 4, p. 662], as well as the thickness of the structure

itself. The primary source of radiation in LEO is low energy electrons, and low energy protons which are

encountered mostly in the South Atlantic Anomaly (SAA) from approximately 45° latitude and 45°

longitude centered near 20°N, 20° W [Ref. 5, p. 2339; Ref. 6, p. 2344]. Energetic protons, an occasional

source of radiation, are expected with solar flares [Ref. 4, p. 712]. As a result PANSAT should experience

an ionizing radiation dose rate of about one krad (Si) per year [Ref. 4, p. 452].

C. RADIATION EFFECTS ON ELECTRONICS
There are two primary effects caused by radiation on electronics: an effect from the dose rate that

causes single event upsets (SEU), as well as a total dose effect. PANSAT will orbit in a relatively benign

radiation environment compared to other regions of space. The selection of PANSAT electronics

incorporate some concern for radiation exposure; however, the structure of the spacecraft including the

boxes which contain the electronic modules provides substantial radiation shielding. As a lowest common

denominator of electronic component selection where redundancy applies, industrial temperature grade

integrated circuits fabricated with Complementary Metal Oxide Semiconductor (CMOS) technology using

epitaxial layers are used. Circuitry of PANSAT that presents a source of a single point of failure uses

radiation hardened devices. Otherwise, these radiation hardened devices are expensive, power-hungry, and

an unnecessary choice for PANSAT.

1. Single Event Effects
Single event effects (SEE) are the responses of an IC to the passage of a single highly energetic

charged particle, and include single event upsets (SEU), single event latchup (SEL), and single event

burnout (SEB). As a particle travels through the silicon layers of an IC, it loses energy creating ionization

or electron-hole pair generation along its path. Generally, the higher the mass and charge of the particle,

the greater the amount of ionization produced.

SEBs are observed in power MOSFETs where high voltages and electric fields are present; and

thus are not a real concern for PAN SAT electronics of the System Controller. However SELs, the effect of

activating a parasitic silicon controlled rectifier within a CMOS IC, has the potential to destroy a device or

a portion of a device while it is in the latched condition. In order to reset the device it must be powered

off. Fortunately, thoughtful device design can reduce or eliminate this effect. The SELF is the most

common effect to upset an IC, resulting in a temporary or permanent change of state. SEUs are the result

of the rate of individual hits on electronics, in particular an IC by high energy particles. SEUs result in

errors within electronic systems by causing a change in the state of a logic storage element [Ref. 7].

2. Single Event Effects Experienced by PANSAT
PANSAT is expected to experience a variety of SEEs throughout its lifetime. At worst, these

effects will most likely cause a particular system to reset; initiating a restart of the electronics, as if a launch

has just occurred. The design of PANSAT allows the electronic systems to be powered down, and then

back up. Such action clears such SELs. Fortunately, PANSAT is not expected to experience many SELs.

D. DOCUMENTATION CONVENTIONS

1. Numbering
By default, all numbers in this thesis are base-10 (decimal). Base-16 numbers (hexadecimal) are

prefixed by the following notation, Ox. Thus, the number OxOF is the hexadecimal value for 15 (decimal);

an exception to this rule is found only within the assembly language excerpts of the software module

startup.asm where the convention of the assembler is to append an h, e.g. OFh. Binary values are either

evident (only one digit exists), or are pointed out within the text.

2. Signal Names
Signal names are chosen to best represent the function they perform. In addition, digital signals

also include the logic assertion level. If a signal has an overbar across its name, e.g. RD, then that signal

is considered active LOW; that is, it is considered asserted when the signal is a binary 0, corresponding to 0

V. Otherwise, the signal is considered active HIGH; that is, it is considered asserted when the signal is a

binary 1, corresponding to 5 V.

3. Logic Expressions
Logic equations for circuit diagrams and Karnaugh map analyses presented in this document use

the + symbol for the inclusive logical OR function. The logical AND function is represented with the

symbol *. The overbar either indicates the assertion level of a signal (as explained in the section above)

when it is the result of an equation, or indicates the negation of a logic expression. Otherwise, for

programming languages (i.e. C), the operator rules of the language apply [Ref. 8, Ref. 9].

4. Software Flow Diagrams
Software flow diagrams use blocks to depict either a subroutine or a statement. Bold blocks refer

to subroutines.

The project background and expected operating environment were considered in designing the

PANSAT System Controller hardware and software. In addition, the System Controller design was

influenced by the other electronic modules of the spacecraft. An overview of the hardware and software

designs as well as an introduction to the spacecraft electronic modules are presented in the next chapter.

III. PANSAT ELECTRONICS AND SOFTWARE
OVERVIEW

This chapter provides design constraints and tradeoffs that influenced the design of the System

Controller. Furthermore, an overview of the electronic systems of PANSAT is presented as well as an

architectural overview of the System Controller hardware and software.

A. DESIGN CONSTRAINTS AND TRADEOFFS
The design objective was to build a digital computer (system controller) using readily available

components. Six major constraints influenced the design:

Suitability for use in a short duration low-Earth orbit radiation environment.
Printed circuit board area required.
Speed of operation.
Power required.
Cost.
High-level software environment support and compatibility with existing software tools.

PANSAT will operate on a limited power budget; all power is dependent upon solar panels with

batteries to store power. Generally, faster systems require more power. Furthermore, radiation hardened

components usually require more power than the non-hardened counterparts. Also, radiation hardened

parts are usually extremely expensive (averaging 20 times the cost of a comparable high reliability, non

radiation hardened part). The cost of using radiation hardened parts within PANSAT is neither justified

nor necessary.

In general CMOS was chosen over other logic families because of its lower power consumption.

Often, standard small scale integration (SSI) and medium scale integration (MSI) parts were chosen for

logic generation because they are readily available and offer decreased susceptibility to SEUs at a

reasonable cost. Since PANSAT System Controller operates at a relatively low clock rate, power was

judged as less critical than size and functionality.

Two families of CMOS logic ICs are used throughout the design of the System Controller, High-

speed CMOS and Advanced CMOS [Ref. 10]. The Advanced CMOS (AC) is approximately three to five

times faster than the equivalent High-speed (HS) devices; however, the AC devices consume about 50%

more power. AC components are also more expensive. AC components are used in the design only where

necessary. They are mostly found in the memory glue logic.

For many LSI and VLSI devices in this design, high reliability (not radiation hardened), military

temperature rated components are used wherever possible. Many devices are processed to the

MIL-STD-883 specifications. A few others are processed to industrial specifications. All circuit

components are identified in Appendix C which contains the Bill of Materials (BOM) for the circuit board

fabrication.

B. PANSAT SUBSYSTEM HARDWARE GENERAL
DESCRIPTION

Figure 2 shows a block diagram of the entire PANSAT electronics. Redundant modules: System

Controller (SC), Analog Temperature Multiplexers (TMUX), and Mass Storage (MS), are shown above

and below the common electrical bus called the Peripheral Control Bus (PCB). Primary and redundant

module designation is arbitrary since respective modules are essentially identical. Redundant modules in

standby mode will be powered off. However, because the control bus allows individual module addressing

by the active SC, either, or both, of the modules (TMUX or MS) may be enabled. The two remaining

modules of the PANSAT electronics are the Radio Frequency (RF) system responsible for up and down

conversion of the communication signals, and the Electrical Power Subsystem (EPS) which is responsible

for the distribution of power on the satellite.

10

Communications -
Paytoad

Antennas (4)

w
Matchning
Network

Radio
Frequency

Section

-DIGITALCONTROL SUBSYSTEM (DCS)-

TEMP
Sensors (A)

Modem

System
Controller

A

uz
Temperature

Sensor
Multiplexer A

(TMUX-A)

Mass
Storage A

Control Bus (PCB)

System
Controller

Temperature
Sensor

Multiplexer B
(TMUX-B)

X

Mass
Storage B

TEMP
Sensors (B)

-Electrical Power Subsystem ■
(EPS)

Battery A

Electrical
Power

Switching &
Logic

[Solar Array [

Battery B

Figure 2. PANSAT Block Diagram.

The EPS controls the charging of the batteries via the solar panels and the distribution of power to

the rest of the spacecraft. The satellite has 18 solar panels for the production of power. Power is stored in

two banks of nine batteries each. Each battery bank has the capability of providing complete power for the

satellite. The mass storage system provides the memory needed for storage of telemetry and data uploaded

to the satellite by users of the satellite. It contains two redundant systems, each with 4.5 Mbytes of random

access memory. The TMUX is an analog multiplexer which directs which temperature sensor is being read

by a System Controller. There are temperature sensors on all major satellite components to provide a

monitoring capability.

C. SYSTEM CONTROLLER ORGANIZATIONAL OVERVIEW
The System Controller of PANSAT is an embedded microprocessor-based computer system for

the satellite. The electronics provide interface circuits to control all of the satellite's subsystems, as well as

create an environment capable of supporting high-level software. Firmware, embedded within ROM in the

computer, is the software that is capable of initializing the entire satellite, maintaining the batteries, and

conducting simple communications with Earth with the goal of uploading more sophisticated software.

11

1. Hardware Organization
As mentioned above, the PCB is an 8-bit parallel control and data bus capable of uniquely

addressing each subsystem in the spacecraft. Each subsystem has a unique power connection, switchable

by command of the SC via the EPS. Also, each subsystem has a unique address in which it responds to

commands issued by the active SC to perform reads and writes between the SC and the subsystem. Each

subsystem has radiation hardened circuitry to interface the subsystem to the PCB. These components were

chosen because this bus is not redundant and is a single point of failure. The electronic circuits of the PCB

are always powered on when the spacecraft has bus power. These electronic circuits are responsible for

isolating a subsystem from the bus when it is not powered on; the same circuits enable each subsystem to

respond when powered on and addressed via a SC.

The System Controllers differ from the other subsystems in that they are capable of controlling the

PCB (rather than responding to the PCB). However, within the EPS is circuitry which allows only one SC

to be powered on at a time in order to remove the possibility of two controllers manipulating

simultaneously the PCB. A SC remains powered on unless it fails to notify the EPS within a certain time

interval; thus a SC is subject to an external watchdog timer contained within the EPS.

The system controllers are identical in design. However, the remaining discussions will normally

refer to a single system controller, implying the same applies to the other SC. A SC is best understood by

viewing its design from a top-down approach. As seen in Figure 3, at the top-most layer is a

M80C186XL-10 microprocessor and some of its support circuitry for a clock and reset circuitry, to the

right side are four other blocks. On the top-right is the general control input/output (I/O) module, the next

block down on the right is the serial communications control module, next is the system memory module,

and at the bottom is the Analog-to-Digital module. Also shown is the signal interface between the

modules, required within a System Controller. A photo of the completed circuit board is shown following

the block diagram.

12

A>°a

!>- *is -53

Sf OUT

TMR_IN<1..0>

r*^

80186

TMR.It^-a TMR_OUTj_a

RES

' H5CO. .B>»

APDD 4<DD

LMSBC
GND

«DUS..B>

PC5<6..e>*

3DT/R
DEN»
RLE

CLK

RESET

MODEM_TEMP .

EDflC_ERR_ACK* ;
M0DEM<4. ,0> .

B0<15..0)

RD*
WR*
CE«

D/C

•i
B

PCLK
INT»

M0DEM<4. . 0> _

ii

SYS_MLMORY

BHE*
RD*

ALE
DT/-R

EWC_ERR_ACK* ;

5GL_ER_FLG .

DBL_ER_FLG .

RESET

DEN*

RD< 15.. 0>

RD«
WR* cs*
«_E MODEM-TEHP
CLK

SCft_TEMP
INT*

Figure 3. System Controller Block Diagram.

13

Figure 4. System Controller Circuit Board.

The M80C186 is available in many versions, each with a different maximum input clock rate.

Within this document, 80186 will refer to any version of the microprocessor, and M80C186XL will refer

specifically to the XL-10 (10 MHz) version which is used on board PANS AT.

2. Software Organization
The software organization of a SC resembles closely the hardware. However, since software not

only provides control of hardware but also involves a process flow (the goal of the software is to do

something from start to finish), further modules are useful in implementing the software for PANSAT.

The goal of the software described within this document is to provide simple and reliable control

of the spacecraft in order to upload high-level layers of software which are modifiable from a ground

station. This software is known as the ROM Boot software. It is embedded on space qualified ROM, and

is thus a permanent product, also known as firmware.

Looking at the ROM boot software as in Figure 5, the first software module is responsible for the

System Controller Startup. Next is the Boot Loader software which works as a large loop, making sure all

the other modules orchestrate together correctly. Within this boot loading process, there are modules

14

responsible for the control of the batteries, responding to communications requests from a ground station,

and dealing with scenarios which require alternate configurations of hardware.

PANSAT ROM Boot.

I Microprocessor /
RESET. t

Startup.

Boot Loader.

Secondary
Loader.

Final Loader.

Figure 5. ROM Boot Software Overview.

Viewing from the software module perspective, Figure 6, there are device drivers for the CPU

setup, the EDAC RAM, the PCB, the mass storage units, the serial communications, and telemetry

gathering which includes driving the analog-to-digital circuits. This figure depicts all of the files required

to describe the code of the entire ROM Boot software.

This overview presented high-level descriptions of the System Conroller hardware and software in

order to discuss in more detail the designs of these systems. The next few chapters describe in great detail

the hardware and software designs of the System Controller, beginning with a presentation of the hardware

that implements the satellite's general purpose computer.

15

"a>

a>

0 :c
1=1 1=1

m S O ;C
cd cd

Q_ Q_
SL O

O

cj ad

&&
CO CO

0 3C
to" to"

ce or

0>
O 3=

Q_ Q_ 3

S3

o 3=
CO CO

O 31
Q Ö

o o 0 o
CO CO

0 m
titD

Q_ D-
CO CO

«0
=3
O
O

O
>%

CO

0 :n
Lt_ u_ a: or

0 re
UJ LU
1=1 (=1
O O

LU a Q LU LU

O

0 =q

0
O

0 nz
s«i it:
c_> 0 g g
0 Ö

Figure 6. ROM Boot Software File Hierarchy.

16

IV. SYSTEM CONTROLLER HARDWARE

A. MICROPROCESSOR
The M80C186XL-10 microprocessor from Intel [Ref. 11, Ref. 12, Ref. 13] provides CPU

functionality for the System Controller. This 10 MHz version provides well tested and high-level

integration that is very suitable for PANSAT. Within the M80C186 package are the following integrated

features:

• CPU core with a CISC instruction set, compatible with 8086/8088 instruction sets.
• Programmable memory (5) and peripheral chip (6) selects, with wait state generators.
• A clock generator, providing three timers.
• Programmable interrupt controller.
• Two channel Direct Memory Access (DMA) controller.

The M80C186XL-10 was chosen for PANSAT for many other practical reasons, such as:

• Military version (providing high reliability at a low cost) of the popular 80186.
• The design team has extensive experience designing Intel-based embedded systems.
• Software development tools were already available for this CPU architecture.

Reset Circuitry and Timing
A simple RC circuit forces the RES input of the M80C186XL low for a sufficient time so that the

CPU assumes a Reset state. Values of R = 10 kQ and C = 1 uF create a time constant of 10 msec, assuring

the System Controller board of stable power by the time the CPU Reset state is assumed.

2. Input Clock
A fixed frequency source of 14.7456 MHz feeds the XI input of the M80C186XL, which in turn

divides that signal by two to form a 7.3728 MHz processor and board level system clock for the peripheral

devices which use clocks (serial communications controller, memory, and the AID converter). This is well

within the timing limits of the peripherals. Of particular concern are two peripherals. First, the 82C55A

will operate up to 8 MHz (it does not use a clock, but rather will read and write up to a speed of 8 MHz).

Second, the ED AC unit is designed to work with this timing, and would only allow approximately a 15%

faster clock. Faster components would have to be incorporated in the design if the clock rate were to

increase (this increase in speed would also cause an increase in power consumption).

17

3. Interrupts and Direct Memory Access
The M80C186XL has an Interrupt Control Unit, shown in Figure 7, which synchronizes and

prioritizes interrupt sources and provides the interrupt vector to the CPU. Hardware interrupts can

originate from on-chip peripherals (such as the timers) and from four external interrupt pins.

TIMER TIMER TIMER
.0^ .1, .2.

DMA DMA
0 1

INT INT INT INT

1

0 1 □ a

Y Y YY n
INTERRUPT

PRIORITY
RESOLVER

TO CPU
INTERRUPT REQUEST

VECTOR
GENERATION

LOGIC

JZ
F-BUS

Figure 7. Interrupt Control Unit Block Diagram [from Ref. 12]

External hardware interrupts supported with the design of the System Controller are Interrupt

Requests (IRQ) 0 - 3, which are labeled INTO - INT3, and the DMA requests, which are labeled DRQO

and DRQ1. IRQO through IRQ3 map to absolute interrupt numbers 12 through 15. DRQO and DRQ1

map to absolute interrupt numbers 10 and 11. The IRQs are designated to the peripherals of the System

Controller that require interrupt support, as shown in Table 1. The DMA interrupts are used with data

transfers with the SCC.

Interrupt/DMA
Request

Absolute i
'interrupt ;\

Purpose

INTO 12 SCC (85C30)
INT1 13 A/D Converter (LM12H458)
INT2 14 EDAC Hard Error
INT3 15 EDAC Soft Error
DMAO 10 SCC W/ REQA (Receive request)
DMA1 11 SCC DTR/REQA (Transmit request)

Table 1. External Interrupt Requests.

18

4. Memory and Chip Selects
The M80C186XL supports many programmable memory and chip select signals which reduces

the number of external components needed to perform the logic of address decoding to memory and

devices. For memory chip selects, there are six select outputs for three memory address areas: upper,

midrange, and lower memory. One signal is provided for upper, another for lower, and four for the

midrange memory. The range and starting addresses are user-programmable. A unique configuration was

chosen for PANSAT. The ROM select is generated using the upper memory chip select. Traditionally,

RAM is selected using a combination of the lower chip select and midrange chip selects, depending on the

amount of RAM. Since only 512 kbytes of RAM exist, it is possible for the midrange chip select logic to

generate all the select signals to the RAM. Since all of the RAM is ED AC controlled, this reduces RAM

decoding since only the midrange chip selects need examining, the lower memory chip select can be

ignored.

The M80C186XL supports up to seven external peripheral chip selects. However, the System

Controller only uses five chip selects (PCS4 - PCSO), leaving the remaining chip selects as buffered

addresses (Al and AO) of the CPU. These chip selects access a contiguous block of I/O address space.

Each chip select goes active for 128 bytes. The base address can begin on any 1 kbyte boundary, and is

programmed to begin with address 0 for PANSAT. Figure 8 shows the chip-select block diagram of the

M80C186XL. Table 2 shows chip-select allocation for PANSAT.

INTERNAL
ADDRESS

BUS
-N = BLOCKSIZE I— UCS
—v

»BLOCK SIZE

y*

MEMORY/
I/O SELECTOR

MS

^

= BLOCK SIZE/4 — MCS3

= BLOCK SIZE/4 — MCS2

= BLOCK SIZE/4 — MCSI

= BLOCK SIZE/4 MCSÖ

INTERNAL
ADDRESS BIT

Al .
A2

EX
CONTROL BIT

■ PCSO

■ PCSi

■ PCS3

• PCS4

A MUX

B A/I

-PCS5

-PCS6

Figure 8. Chip Select Block Diagram [from Ref. 12].

19

MChipSepfet ~\ Function Address Range
ucs ROM chip select OxFOOOO - OxFFFFF

MCS3 - MCSO RAM chip selects 0x00000 - 0x7FFFF

LCS Unused. Inactive.

PCSO SCC (85C30) I/O: 0x00 - 0x7F

PCS1 A/D (LM12H458) I/O: 0x80 - OxFF

PCS2 PPI (82C55A) I/O: 0x100-Ox 17F

PCS3 Modem Latch I/O: 0x180-Ox IFF

PCS4 PA-100 I/O: 0x200 - 0x27F

Table 2. Chip Selects.

5. Timers
The M80C186XL contains a timer control unit which has three timers, of which two have external

inputs and outputs. The internal timer, Timer 2, is used as a system clock tick generator. The two timers

with external outputs, also have external inputs, allowing the triggering of the timers from external sources,

independent of the CPU clock. Except for a system clock, the only other need for a timer for the System

Controller is a hardware-timed power on switch for the RF output. Since the RF output can be on for up to

ten seconds, the two timers are connected in cascade. These timers are used with an external gate to force

the RF output off when the timer output expires.

B. POWER SENSING AND REGULATION
Power sensing and regulation are an important part of the System Controller circuitry. The

circuits provide signal isolation between the System Controller and the Peripheral Control Bus when the

SC is powered off, monitor switched power from the Electrical Power Subsystem (EPS), and provide

regulated +5 V to the System Controller when active.

1. Power On Detection
The MAX8212 [Ref. 14] is a programmable voltage detector used to sense the powering on of a

System Controller by the EPS. Since only the circuitry which isolates a System Controller from the

Peripheral Control Bus (PCB) is active at all times, this voltage detector has the responsibility of quickly

sensing the power on, removing the signal isolation between the System Controller and the PCB and

activating the DC-DC converter, the MAX744A. The output (OUT) of the MAX8212 controls the enabling

of the pass gates, 54HC125s, used to isolate signals between the SC and the PCB when the SC is inactive.

When power on is not detected, OUT is high, disabling these gates. This circuitry is shown in Figure 9.

20

U23

fiyü)

RF TIMER

RF ENABLE

fnäSTlo '3 ^XJ-

Figure 9. Power On Detect and Signal Isolation.

The resistors labeled 120 are 120 Q resistors used to reduce current leakage into non-powered devices

when the SC is not active.

The MAX8212 uses input hysteresis to set the detect on and detect off voltage levels. These

levels are programmed with external resistors. The selection of the resistors was determined by solving for

the equations given in the databook (Equation 1) in conjunction with selecting resistors that are available as

1% precision and highly reliable and reducing the source current used by the device. Three resistors are

used, RP, RQ, and Rs. The detect voltages are Vh, for the high voltage in which the power on detect occurs,

and V,, for the low voltage in which the power off detect occurs.

21

v,
r R„R ^
^ + RP

V&Q+R

'P
RpJ

. , (RP+R0
>\/ x

(1.15) and Vh = rn Q (1.15)
VA,./ v Rp (i)

Power from the EPS to a System Controller will be between approximately 10 V to 15 V,

depending on whether the solar panels are supplying power or the condition of the batteries, if stored

energy is supplying power. A detect on, Vh, voltage of 9.0 V, and a detect off, VI, voltage of 8.0 V were

selected. The resulting resistor values were determined: RP = 21.5 kQ, RQ = 147 kQ, and Rs = 1.0 MQ

(all 1%). The resulting source current is 53 uA which is within the low operating range of the device.

2. DC-DC Conversion
The MAX744A [Ref. 15] is a current-mode pulse-width modulation DC-DC converter. This

device awaits the EPS to provide the System Controller with switched power. The MAX744A takes an

input voltage between 6 V and 16 V, an ideal range for the EPS, and converts it to a 5.0 V ±5% output.

The device can support a load current of up to 750 mA.

Operating at an input voltage of 12 V, the MAX744A is most efficient (90%) when supplying

about 400 mA of current. The System Controller and the Modem unit powered together require about 350

mA (87% efficient). When operating with the Modem unit powered off, a System Controller requires

about 70 mA of current (83% efficient). In normal operations, both the SC and the Modem will be

powered on continuously.

The MAX744A requires some support circuitry (resistors, capacitors, inductors, and a diode).

The resistors and capacitors mostly control the programmable soft-start to ensure an orderly power-up by

limiting surge currents. The recommended values for the components were used with the exception of the

capacitor, Cl, between the Soft-Start input and ground, and resistor, Rl, between the Soft-Start input and

Shutdown output. Selecting Cl = 0.1 uF and Rl = 511 kQ, while expecting a typical input voltage of 12 V

and an output current of 350 mA, a Soft-Start time of 5 msec is expected. Thus, the 10 msec Reset of the

M80C186XL-10 is generous. On the output side, a low equivalent series resistance (ESR) capacitor was

used to keep the output ripple less than 50 mV peak-to-peak. Additionally, an optional low-pass filter

using an inductor and capacitor was added to further reduce the output ripple to about 5mV peak-to-peak.

The resulting circuitry is shown in Figure 10.

22

Figure 10. DC-DC Conversion.

C. PERIPHERAL DATA BUS
This section applies to the design of the Peripheral Data Bus which excludes the serial

communications control (via the SCC) and the analog to digital converter. The Peripheral Data Bus

consists of the circuitry required to implement the Peripheral Control Bus, circuitry to buffer signals that

are passed on to peripheral devices (i.e. the 82C55 and the Modem board, and control signals for the

EDAC and Modem board power).

The System Controller contains circuitry to provide the driving capability of the Peripheral

Control Bus (PCB) which links all of the subsystems of PANS AT with a common control and parallel data

bus. This is accomplished using a programmable peripheral interface (PPI, or 82C55A) integrated circuit.

In addition to manipulating the PCB, the PPI also controls the signaling to the memory system (the error

acknowledge in the EDAC) and the power switch control to the Modem unit.

1. Programmable Peripheral Interface
The 82C55A is a CMOS version of the standard 8255A which provides a general purpose

programmable peripheral interface (PPI) [Ref. 16]. There are 24 I/O pins which may be individually

programmed in certain logical groups and operational modes.

2. Peripheral Control Bus (PCB)
During satellite startup, the Electric Power Subsystem (EPS) provides +5 V to the PCB. The EPS

also cycles all power switches to the peripheral modules so that all are powered off except the +5 V power

to the PCB. The PCB must be powered up prior to powering on a System Controller module.

23

Using the 82C55A in a strobed bi-directional parallel data transfer configuration with hardware

handshaking, a digital bus was created with 8 data lines, 6 addressing lines, and two control lines consisting

of read and write. In this mode, Port A of the 82C55A is the bi-directional data buffer. And Port B

provides an uni-directional address and control buffer. Port C provides the handshaking and three general

purpose control lines which are used for controls not on the PCB, but within the System Controller,

specifically the Modem Power control and the ED AC Error Acknowledge controls.

Two data transceivers, 54HC245, are used to isolate the 82C55A from the PCB connector. Other

signals potentially coming off the SC board onto the PCB are the System Controller Active (SC_A) and the

RF Enable (RF_EN) signals. These signals are isolated from the PCB using a quad digital switch, a

54HC125. The voltage threshold detector mentioned earlier assists in the implementation of the PCB

isolation circuitry. This circuit disables the two data transceivers and the one digital switch from the PCB

in the event that the SC board is powered down.

A 25-pin male D connector is used for connection to the PCB. It contains the eight bits of data,

six bits of address, 2 bits of control, +5 V, switched +12 V, grounds, the System Controller Active (SCA)

signal, and the RF Enable (RFEN) signals. Appendix B shows the pin assignments.

3. Modem Control Interface
The Modem is tightly coupled to the System Controller microprocessor, similar to other on-board

peripherals. However the Modem unit is physically contained on another board connected to the System

Controller via a 37-pin female D connector. Using data transceivers on each board next to the connectors,

buffered address, data, and control signals from the M80C186XL are passed to the Modem. Besides the

microprocessor interface, the Modem also shares signals with a Serial Communications Controller (SCC,

85C30) which is described later in this chapter. The signals shared between the Modem and the SCC are

synchronous transmit and receive data, and their corresponding clocks. Also included are a signal to

deliver the temperature of the Modem board to the System Controller and power and ground. The pin

assignments are given in detail in Appendix B.

The Modem operates independently of the microprocessor. However, the heart of the Modem

board is the PA-100 demodulator [Ref. 17] which requires configuration by downloading (from the CPU of

the SC) parameters as register sets. Occasionally, this processor requires its status to be read by the

microprocessor, to determine if a different configuration is needed. Otherwise, the Modem sends and

receives synchronous digital data between itself and the SCC on the System Controller without constant

supervision by the microprocessor.

Power is distributed to the Modem board in two ways. First, because the Modem board has

isolation buffers which disable signals when the board is supposed to be powered off (similar to the PCB

24

isolation circuitry), there is +5 V delivered to the board at all times via the Vcc pins. Furthermore, when

the Modem board is switched on by the System Controller, +5 V is delivered to the board via the +5 V

pins. The switched power is handled by a Power Distribution Switch, the TPS2013 [Ref. 18]. The

TPS2013 is a logic controlled heavy capacitive load power distribution switch in the form of an IC. It

handles a maximum continuous current load of 1.5 A (more than sufficient for the 250 mA load of the

Modem when powered on). This switch is controlled by the Modem Power (MODEMPWR) signal which

originates from Bit 0 of Port C of the 82C55A, and is active low.

4. CPU Signal Isolation and Latching
In order to reduce the signal loading on the CPU and to ease the timing requirements on the I/O

digital circuitry, an address latch, a data transceiver, and control signal buffers are used as shown in Figure

11. Since the data signals are bi-directional between the CPU and the I/O peripherals, an appropriate bi-

directional data transceiver is used, the 54HC245. This device is enabled using Peripheral Chip Selects of

the CPU, PCS4 - PCS2 , when the Data Enable (DEN) of the CPU is active. The direction of the transfer

is controlled by the Data Transmit/Receive (DT/ R) signal of the CPU. Address signals travel one

direction only, from the CPU to the peripherals. Furthermore, since the peripherals themselves decode

whether or not they are addressed using the Peripheral Chip Selects, addresses generated by the CPU are

latched every time they are generated. The Address Latch Enable (ALE) signal qualifies the addresses. A

simple latch, the 54HC573, is used to capture the addresses. Note, since Address 0 (A0) of the CPU is not

used for I/O addressing this signal is not passed through the address latch. For peripherals, Al is the least

irnifj

U10

U18:C
e>—*H—\

54HCM

FS>-

l«g>-

|R35)—

E>~

U1B:0

U1:C o U34:C

3> &&*-

U8

Figure 11. CPU Signal Isolation and Latching.

25

significant address bit. From the CPU point of view, all peripherals are even addressed. Furthermore, the

Read (RD) and Write (WR) signals from the CPU are buffered. Normally, these signals are not buffered

since they have adequate driver power. However, these signals are delivered off board to the Modem.

5. Signal Timing to Modem Board

All of the peripheral ICs that integrate with the M80C186XL use an active low write signal, WR.

The write action occurs on the rising edge of the write signal. This signal is sent through the Modem

connector to supply the signal to the Modem board latch as well as the PA-100. The PA-100 however uses

the falling edge of the write signal to perform a write action. Unfortunately, data from the CPU only

becomes stable at this exact same time. This problem is worsened because the data enabling logic on the

System Controller, which controls the enabling and direction of the bi-direction signal driver, delays the

delivery of the data signals to the Modem board. As a solution to this problem, a higher speed device is

used for the signal driver, the 54AC245 versus the 54HC245. In addition, the decoding logic of the

peripheral chip selects, PCS4 - PCS2, uses a high speed device for the OR gate, the 54AC32, to more

rapidly enable the signal driver. The slower speed gate which ANDs PCS3 with PCS2 poses no problem

since during a write to the PA-100 these signals are high and do not change. Finally, WR from the

microprocessor is sent through an unused AND gate with the other input held high. This provides a further

delay of the write signal to the PA-100.

D. MEMORY
The M80C186XL has a 16-bit wide external data bus. The memory address space is 20-bit,

providing up to 1 Mbyte of byte addressable memory locations in the range from 0x0 through OxFFFFF.

The memory address space on the 16-bit data bus is physically implemented by dividing the address space

into two banks of up to 512 kbytes, as shown in Figure 12. One bank connects to the lower half of the data

bus and contains even addressed bytes, where A0 = 0. The other bank connects to the upper half of the

data bus and contains odd addressed bytes, where A0 = 1. Address lines A19 - Al select a specific byte

within each bank. A0 and Bus High Enable (EHE) determine whether one bank or both banks are used in

the data transfers.

26

PHYSICAL IMPLEMENTATION OF THE
ADDRESS SPACE FOR 16-BIT SYSTEMS

512 KBYTES 512 KBYTES

3

FFFFF

FFFFD

^>

A19:1 D15:8

^

FFFFE

FFFFC

0

BHE D7:0 AO

Figure 12. 80186 Memory Addressing [from Ref. 12].

The System Controller Memory includes 64 kbytes of ROM and 512 kbytes of SRAM. Both

types of data are addressed from the 16-bit wide external data bus explained in Figure 12. The memory

system requires special buffers to temporarily latch both addresses and data during the memory access read

and write cycles. Data transceivers reside between the memory circuitry and the microprocessor to reduce

the signal loading on the external CPU address and data bus. The block diagram of Figure 13 shows a

logical structure of this memory system. On the left are signals that pass between the CPU and the memory

system. The AND gates combine the four memory chip selects from the CPU into one signal for the entire

512 kbytes of RAM access. The block labeled ADDRLATCHES latches a memory address during the

beginning of a memory read or write cycle. The blocks in the middle labeled EDACMASTERSM and

EDACSLAVESM contain circuitry that implements the state machines to control the EDAC controller

(the ACS630MS). The DATAXCVRS block isolates the microprocessor data bus from the memory

devices, reducing the signal loading of the CPU external address and data bus. The block named RAM

contains the SRAM devices as well as the EDAC controller. At the bottom right is the ROM block.

27

|0
z jO

IS l£ £8 1* ß ID
r £ 15 3 a

s
/

Tl
nj M

1 £ 1 | V] *-'

li J Is J'tfE
p- u

■ "5 .
1 >

n
1 rt n 1

g Q 8 P $ g
n * w s * r

n
SUDD

in ; 33 *
o t

9 ö ö \3
n

ru u
r y 0

m . n

u o A __n.
hnfiirgnpimBD
* * i n

?! * n

* Ü

«*P r fi£
5 5 S F 5 5

<

' ' T 3 n n
8 1 is Sf? ru

ui

•

o u c ; t J

O 1 S r ■> r1

m: ^i":
B 1- i !" ¥ * * Ul y

O ^
f tj g ? ? n

n I 3 in
r
i 3

M "I

F
IS ru

UI

ü
8

z

§ z P 3

|3
5
3

rt A r
cur n □ p u V -

at

s a

« |
in n fl «• s B 5

5 ui

Q s a s 3

S

5
1 s

6 s w <6 0
■n r

IS

a
U) |

s •

10
IS

Figure 13. Memory Block Diagram.

28

1. ROM
PANS AT has 64 kbytes of ROM, composed of two devices which implement the even and odd

banks. The M27C256 is a 256 kbit (32 kbyte x 8-bit) CHMOS UV Erasable PROM. This is a 5 V only

EPROM requiring low power (200 uA maximum standby, and 30 mA maximum active). This is a military

temperature range device with a high degree of protection against latch-up [Ref. 19]. This device provides

easy interfacing with the M80C186XL. For development purposes, a low-cost standard version of this

device exists. All devices can be programmed easily using the Dataman S4 [Ref. 20].

2. Error Detection and Correction
Error Detection And Correction (EDAC) circuitry provides single-bit error correction with dual-

bit error detection for all of PANSAT's CPU-addressable Static Random Access Memory (SRAM). The

error detection and correction is accomplished using a Hamming code to generate a check word for each

data word stored in memory. The level of EDAC protection needed determines the number of check word

bits per data word. Providing single-bit error correction with dual-bit error detection to an eight data bit

word requires five check bits. To provide the same level of detection to a sixteen data bit word requires six

check bits.

When a data word is stored in memory, the associated check word is also stored. During a

memory read operation the data word and the corresponding check word are retrieved from memory. A

new check word based on the data word from memory is generated and compared with the stored check

word. If the two check words are identical, the data word is assumed correct; however, three or more bit

errors may not be detected. Correctable errors are identified and corrected. Words that are not correctable,

but detected as incorrect, cause the error to be flagged.

a. Existing Design

The original Error Detection And Correction (EDAC) circuitry was designed by Oechsel

[Ref. 21]. This design is a memory bus controller using a commercially available EDAC IC, the

ACS630MS [Ref. 22]. The controller implements a sequential state machine to generate the required

control signals for the SRAM (Mosaic's MSM-8256 [Ref. 23]), provides transceivers and latches to isolate

the SRAM data bus from the microprocessor local bus, and coordinates the operation of the EDAC IC.

b. Modifications of the Write Back Control

The original design requires that every word accessed from memory be written back to

memory, regardless if there is an error or not. This is a good design in that the memory bus controller

automatically corrects the error in the data word that is sent to the CPU, as well as the original data word in

the SRAM. Although this does not affect the speed performance of the System Controller, since the EDAC

29

write-back occurs within the memory access cycle of the CPU, it does affect the power used. Writing back

to every accessed memory location requires substantial extra memory accesses (i.e. using extra power) as

compared to only writing back when memory is written to, or when memory is read and an error is

detected and corrected. As a result, the write back control logic was modified to only write to memory

when memory is being written to by the CPU, or when an error is detected and corrected following a

memory read access.

The control signal that causes SRAM to write a data word is MEM_ WR . Figure 14

shows a Karnaugh Map and the resulting equation that eliminates the write back of data during read cycles

when the single error latch is not set.

SGL^\ 00 01 11 10

00
01
11
10

1 1 1 0
1 1 1 1
1 1 1 0
1 1 1 0

MEM_ WR = QAI + QA0 + SOL • WR

Figure 14. Memory Write Back Logic.

Using unused gates from the remaining glue logic needed to implement the memory bus

controller, Figure 15 shows the circuitry which performs this write back function.

SGL

WR

54AC04

54AC08

_ 54AC32

54AC32
OAD

rial

\ ~\
_\ > _ MEM.WR

/ -S

Figure 15. Memory Write Back Circuit.

c. Modification of the Reset Circuitry
The original design used an inverter to reset the master state machine. As an alternative,

the flip-flop's reset input is directly connected to Vcc. This is possible because by the time the

M80C186XL has completed a reset during power up, it has asserted the reset signal during the power up,

and the flip-flop has already reached the initial standby state (00).

30

d. Modification of the EDAC Error Acknowledge

During the development of the original EDAC circuitry, for simplicity one of the

peripheral chip selects of the M80C186XL was used to acknowledge a hard or soft error. Since all the

peripheral chip selects have I/O addressing responsibilities for the System Controller, an alternative was

needed. The 82C55A described above has control bits available on its Port C. Bit 2 of this port is used as

the ERR_ ACK signal to the EDAC.

e. Modification of the Transceiver Enables

The original design of the EDAC circuitry connected the ROM directly to the

microprocessor data bus. However, it is desirable to isolate the ROM from this data bus. To use the same

transceivers that are used for the SRAM, additional logic was needed at the state machine outputs which

control the enabling of these transceivers. Allowing a valid combination of Data Enable (DEN) and the

Upper Memory Chip Select (UCS) with the state machine's output (which is valid for a SRAM access),

the following circuitry in Figure 16 shows the modification.

U42

Koc
— >CLK

1D 10
2D 20
3D 30
4D 40
5D 50
6D 6Q
7D 70
SO „ 80
54AC574

l»E)-
U37:B

U33:C o
U33:D

t>
54AC08

-1xCVfi_H)_EM^

HXCVS_HI_EN)

54HC32

Figure 16. Memory Transceiver Enable Logic Circuit.

E. ANALOG-TO-DIGITAL CONVERSION
The System Controller is responsible for converting all analog signals pertaining to satellite

telemetry (voltages, currents, and temperatures) to a digital counterpart. The SC accomplishes this using a

dedicated analog-to-digital converter which is tightly coupled to the microprocessor bus. In addition, since

incoming analog signals arrive whether or not the SC is active, an analog switch is used in conjunction

31

with the PCB isolation circuitry to automatically isolate these signals from a non-active SC. A low-pass

filter removes the high frequency components associated with the Electrical Power Subsystem DC-DC

conversion (and other high frequency noise generated within the satellite).

1. A/D Converter
National Instrument's LM12H458 [Ref. 24, Ref. 25], a 12-bit data acquisition system, is used to

provide analog-to-digital conversion to the System Controller. This device provides single-ended or

differential self-calibrating conversion with its own sample-and-hold. Multiple conversions remain in a

16-bit, 32 register FIFO buffer. An internal 8-word RAM stores the conversion sequence for a program

that can acquire independently and convert up to eight acquisitions through the eight-input multiplexer.

The LM12H458 runs on +5V and an input clock of up to 8 MHz. In standby mode, the device consumes a

negligible 40 uA (maximum). Input signals can range from ground to +5.0 V.

For PANSAT, the LM12H458 is configured to interface with the M80C186XL in a 16-bit data

mode. The inputs of the LM12H458 can be single-ended or differentially acquired by use of

programmable input configurations. In differential mode, the off-board analog signal with its accompanied

ground are converted as a positive signal with reference to this accompanied ground signal. Otherwise, the

ground of the LM12H458 can be used when converting in the single-ended mode. For the temperature

sensor ICs, local to the SC and the Modem board, these signals are delivered single-ended, and thus

conversion uses this mode only.

The LM12H458 is capable of interrupting the microprocessor and uses this to signal end-of-

calibration and end-of-sequence (acquisition finished) conditions. Although DMA is available, it is not

used, sacrificing the M80C186XL's two DMA channels exclusively for the Serial Communications

Controller.

2. Analog Switch
Immediately after entering via the connector on the SC, analog signals pass through an analog

switch. The DG411, a monolithic quad SPST CMOS analog switch from Harris [Ref. 26], provides this

feature. This device has a low On-Resistance (less than 35 Q), and is a very low power device consuming

approximately 5 uA. As mentioned earlier, incoming analog signals arrive whether or not a System

Controller is active. Thus, this analog switch is used to isolate the incoming signals from a non-active SC.

Three of the four channels of the DG411 are used to handle the off-board signals from the Electrical Power

Subsystem and the two Temperature MUXing Subsystems. When the SC is powered off, this device is

powered via the Peripheral Control Bus and the switches are forced open. Upon being powered on, the SC

is designed to automatically close these switches, allowing the external analog signals to enter.

32

3. Voltage Clamping and Low-pass Filter
Studies performed on a prototype of the Electrical Power Subsystem indicated high frequency

components in incoming signals at frequencies around 4.5 kHz, attributed to the switching power supply's

DC-DC converter. Furthermore, unaddressed multiplexers from the Temperature MUX subsystems and

the EPS create signals of about 9.5 V. After advancing through the analog switch, an analog signal is

potentially clamped if over 5.0 Volts using a 5.1 V Zener diode, 1N751, and then enters a passive low-pass

filter using an RC circuit where R = 1 kQ and C = 0.1 uF. The filter is shown in Figure 17. The filter

provides a -3dB break frequency at 1.5 kHz.

V1N
0 B-

a

-VW
1 k

in

z

Figure 17. Voltage Clamping and Low-pass Filter

4. Wiring
As mentioned earlier, the acquisition of off-board analog signals can be performed differentially

or single-endedly. Undesirable potential ground-loops may exist within the satellite electrical systems,

causing differing ground reference points. In order to be able to compensate for this potential problem, the

analog input system was designed to allow the following configurations. Off-board analog signals coming

into a System Controller are sent using a twisted-pair wire set. One signal in the twisted pair is the so-

called positive signal which carries the signal of interest for conversion. The other wire in the pair is the

ground from the electronic circuits that are responsible for generating the signal for conversion.

For the analog signals entering the System Controller, the board was designed to allow one of the

following configurations. The ground signal from a twisted-pair can be ignored by using the single-ended

mode of the LM12H458; this feature is software configurable. Additionally, a twisted pair ground signal

can be isolated from the System Controller circuitry by not allowing the signal to pass beyond the

connector; this is accomplished using a jumper.

5. Connector
A nine-pin male D connector passes incoming analog signals to the System Controller board. The

pin-out is given in Appendix B.

33

6. Temperature Sensing IC
Although not part of the A/D conversion circuitry, a temperature sensing IC is used to provide a

temperature sensor for the System Controller. A single-supply centigrade temperature sensor, the LM50C

[Ref. 27], is a precision IC temperature sensor that can sense a range of-40° C to +125° C. The output

voltage is linearly proportional to the temperature. It consumes very low power with a quiescent current of

less than 130 uA while operating at + 5 V. This sensor delivers its signal into the Analog-to-Digital

converter.

F. SERIAL COMMUNICATIONS
The System Controller contains circuitry that allows both asynchronous and synchronous serial

communications. The asynchronous mode provides an RS-232 compatible interface suitable for

connecting to a standard computer serial interface, such as the COM port on a personal computer. The

asynchronous RS-232 port is used for this purpose. In the synchronous mode, the System Controller is

able to communicate with PANS AT's Modem. The synchronous digital data passes through the Modem as

the interface to the RF unit to provide the BPSK and spread-spectrum communication modes (either at

9846 bits per sec for spread-spectrum mode or at 78.125 kbits per sec for the narrow band mode).

PANSAT will transmit and receive at a center frequency of 436.5 MHz using direct sequence

spread spectrum (DSSS), differentially encoded phase shift keying (DPSK) modulation. The

communications data rate will be 9842 bits per second with a chipping rate of 1.25 mega chips per second.

The chipping sequence is a pseudo random noise sequence produced from a 7 stage linear feedback shift

register. In addition, the satellite will have a narrow band high data rate channel with a data rate of

78.125 kbits per second.

1. Serial Communications Controller
The heart of the serial communications circuitry is the AM85C30 [Ref. 28], a serial

communications controller (SCC) which provides two serial channels that are independently configurable

for asynchronous or synchronous transmission modes with separate transmit and receive clocks. The SCC

functions as a serial-to-parallel and parallel-to-serial converter with the CPU. It is software configurable

by the M80C186. The SCC interrupts the microprocessor using the M80C186's Interrupt Request 0,

INTO. The signal. INT, is active low on the SCC and is thus inverted to be compatible with the active

high INTO. A pull-up resistor keeps the output of the inverter low during the SCC initialization, thus

producing no interrupt to the CPU. This circuitry is shown in Figure 18.

34

U25:C

AM85C36

Figure 18. Serial Communications Circuitry.

Channel A of the SCC is designated the synchronous channel for serial communications between

the CPU of the System Controller and the Modem board. This channel is configured to send and receive

data using external clocks (TRxCA and RTxCA) which are generated by the Modem board. While

operating in the narrow-band mode, the modem supplies transmit and receive clocks of 78.125 kHz (1 byte

every 102 usec). In the spread-spectrum mode, the modem supplies transmit and receive clocks of 9.842

kHz (1 byte every 813 usec). Furthermore, the transmit and receive data signals (TxDA and RxDA) pass

through to the Modem board. Channel A is also configured to assert the Request To Send (RTSA) signal

which acts like a Push To Talk function found on radio transmitter equipment. This signal will be used to

drive the RF unit when transmitting. Channel A has some additional signals used specifically with the

CPU for DMA. The signals for a Receive Request (W / REQA) and for a Transmit Request

(DTR / REQA) are tied directly to the CPU's DMA interrupt request inputs. The SCC uses active high

assertion levels for its DMA requests: W / REQA for DMAO and DTR / REQA for DMA 1. Inverters are

used as in the case of the interrupt request, shown in Figure 18. This hardware configuration is capable of

full-duplex communications. However, the hardware will only operate in a half-duplex due to the

allocated frequency bandwidth in which PANSAT will operate. This synchronous channel is programmed

to operate in the Synchronous Data Link Control (SDLC) mode which applies a cyclic redundancy check

(CRC) using the CCITT CRC-16 algorithm with a CRC seed of OxFFFF. Thus, all synchronous data

frames which fail the CRC are flagged as invalid and are ignored by software.

Channel B of the SCC controls the asynchronous serial communication between the CPU of the

System Controller and a separate Computer. This channel hosts the Serial Test Port Interface which is used

35

only for ground-based operations before launch. It is configured to send and receive data using an RS-232

driver, describe below. This channel also drives Request To Send (RTS) and Clear To Send (CTS) signals

which are used in the RS-232 handshake. A common clock, generated internally by the SCC as derived

from the peripheral clock, is used to generate a data rate of 9600 bits per second. RTSB is used to drive the

enable of the RS-232 driver discussed below.

2. RS-232 Drivers and Receivers
The MAX21 IE [Ref. 29] has multiple RS-232 line drivers and receivers that are suitable for

communications in a harsh environment. Although the asynchronous communication mode will not be

used while in flight, this mode will be used extensively during development, integration, and testing. This

port is a main source of external physical coupling with other electronics, and a potential source of damage

to electronics within the satellite. Thus, the justification for the device which has ±15 kV electrostatic

discharge protection. In RS-232 terminology, the System Controller acts like a Data Communications

Equipment (DCE) and the separate computer is a Data Terminal Equipment (DTE). The signal

assignments, described in Appendix B, follow this convention. The MAX21 IE is enabled by using the

RTSB output of the SCC. When disabled (when not used for development purposes), the MAX21 IE uses

a maximum supply current of 50 uA.

3. Connector
A 9-pin female D connector is used to pass the signals from Channel B used for asynchronous

communication between the System Controller board and a separate computer. The pin-out configuration

was chosen to be compatible with a personal computer COM interface so that a null-modem interface

(crossing of send/receive signals) is not necessary. Thus, a straight through cable is used to connect the

two systems. The signals, shown in Appendix B, are from the point of view of the System Controller.

This concludes the discussion of the System Controller hardware design. This hardware supports

the development and operation of software that control the spacecraft's electronic modules by using the

satellite's general purpose computer. The device drivers for the System Controller hardware and the

electornic modules of PANSAT are described in detail in the following chapter.

36

V. SYSTEM CONTROLLER SOFTWARE DRIVERS

A. DESCRIPTION
The Spacecraft Software for PANSAT is contained within the System Controller as partially

embedded in ROM and additionally uploaded (from Earth) at the time of system bootup and when software

updates are desired. Within PANSAT lie two (2) System Controllers, each with identical Spacecraft

Software ROM.

Operation of the spacecraft software consists of the completion of the hardware initialization and

the creation of a runtime environment suitable for higher-level layers of software. Operation then consists

of monitoring and charging the batteries while establishing primitive communication with the PANSAT

Ground Station at NPS to begin the upload of the main operating system kernel and the secondary loader.

Thereafter, a higher level protocol will then upload BAX (the BekTek AX.25 protocol handler), and

another telemetry collector. AX.25 is a data-link layer protocol designed and used by the Amateur Radio

community to perform digital packet radio communications [Ref. 30]. Using AX.25, the File System and

user services software are uploaded. Finally, the spacecraft is then ready for ggeneral use.

The software is written in C with 80186 assembler for critical code and the initial Bootstrap

software. The spacecraft software incorporates the Spacecraft Operating System [Ref. 31] (SCOS), to

provide an Application Program Interface (API) to simplify the job of writing multi-tasking applications.

The Spacecraft Software also incorporates BAX [Ref. 32], to provide another API to simplify the use of

AX.25 for Spacecraft Software tasks.

The spacecraft software involves the porting and integration of SCOS and BAX. It also consists of

various device drivers to interface with the hardware systems of the spacecraft, the collection and saving of

telemetry, and an interface capability with possible experiment payloads via an RS-232 interface.

Furthermore, the spacecraft software contains a store-and-forward mail system which uses the services of

the File Transfer Level 0 (FTLO) protocol [Ref. 33]. Administration and system software and parameter

update capabilities are also part of the spacecraft software.

The discussion of software development that follows concentrates mainly on the code responsible

for the Bootup software which is embedded in ROM; this is the core of PANSAT's device driver software.

Therefore, when referencing the generic term software within the following text, the reference will be to

this Bootup software which contains the core device drivers and boot loader and not SCOS, BAX, nor the

high-level user services.

37

B. HIERARCHY AND MODULE RELATIONSHIPS
A flow of software control from Reset to the completion of the Final Loader can be viewed below.

Spacecraft
Module

Spacecraft Function 'i 'Ground Station Module Ground Station Operations

STARTUP • SC hardware
initialization and
EDAC setup.

• Setup C Runtime
environment.

R
0
M

CONTACT • Send message to PANSAT, granting
PANSAT authority to send a status
message.

• Listen for the spacecraft status
message.

BLOADER • Check batteries and
charge.

• Listen for NPS
Ground Station.

• Performs initial
upload of software
from NPS Ground
Station: KERNEL
and SLOADER,
transfers control to
O.S. kernel

R
0
M

SCLOAD
CONTACT

• Begin by sending messages to
PANSAT, granting authority to
send a status message, and listen
for the spacecraft status message.

• Use SCLOAD to prepare images of
the O.S. kernel (KERNEL) and the
secondary loader (SLOADER).

• Use CONTACT to send binary
images.

SLOADER • Performs
secondary upload
of software from
NPS Ground
Station: BAX,
FLOADER,
CMDTLM.

R
A
M

SCLOADH • Use SCLOADH to prepare (and
send) images of AX.25 (BAX),
Final Loader (FLOADER), and the
Command/Telemetry (CMDTLM)
software tasks.

FLOADER • Performs AX.25-
assisted uploads of
remaining software
from NPS Ground
Station: FS, FTLO,
BBS, other tasks.

• Used for further
software uploads.

R
A
M

SCLOADH • Use SCLOADH to prepare (and
send) images of the File System
(FS), File Transfer Level 0 (FTLO),
the Bulletin Board Server (BBS),
and other tasks.

Table 3. Relationships Between Software Modules.

C. STARTUP
The name Startup refers to a software source code module. This module is software composed in

80186 assembly language and is called startup.asm. After a System Controller receives a reset, it is the

software contained within this module which is invoked first, containing the bootstrap code at the

hardwired absolute memory location of OxFFFFO which is contained within the ROM.

Startup has several goals. The first is to initialize any hardware peripheral on the System

Controller board itself, so that the peripheral is placed in a known state (although not necessarily operable).

This activity is called Hardware Initialization. Furthermore, Startup checks and clears all of the system

38

RAM which is controlled by the EDAC. Once the system RAM has been checked, data which is used by

code composed in C (both embedded within the ROM) is relocated to RAM. This allows read/write access

to variables referenced by C code. In order to support high-level floating point software statements, a

floating point emulator (software-based) is used and must be set up before use by any higher-level software

modules. Finally, a runtime environment becomes operable for the subsequent software modules, all

composed in C, to operate normally.

1. Hardware Initialization
Hardware Initialization begins by programming the M80C186XL's [Ref. 13] internal peripheral

interface registers. These registers are grouped into a block with contiguous addresses and are by default

referenced via an I/O reference beginning at OxOFFOO. This default reference was kept. The M80C186XL

contains multiple Chip Selects to internalize chip select generation for ROM and RAM. After a Reset, the

Upper Memory Chip Select (UCS) will correctly select when referencing the top-most 16 bytes of system

memory, OxOFFFFO through OxOFFFFF. Therefore, the first initialization performed is to change the range

of addresses that the UMCS will generate. In the case of PANSAT, where the ROM is 64 kbytes in size

and occupying the top-most 64 kbytes of system memory, UMCS is configured to start selects at OxFOOOO

for a block size of 64 kbytes.

cli
mov dx, OFFAOh
mov ax, 0F038h
out dx, ax
jmp far ptr START

;upper memory chip select
;Start of EPROM FOOO:Oh, 64K

;START OFOOOOh

The bottom-most location of the 64 kbytes of system ROM is named START. At this location

begins the remaining startup code. This code continues the programming of the peripheral interface

registers. For memory and peripheral chip selects (LCS, MCS, PCS) the table below describes the

configuration of these important selects. By not programming the LCS (not performing a read or write

operation to the configuration register), this chip select remains inactive.

Register Register Address {Register Val«e4; Setup Description
PACS 0xFFA4 0x0000 Peripheral Chip Select base: PCS0 = 0x0000, each block is

0x80 in length. Bus Ready must be active to complete bus
cycle, no wait states inserted in the bus cycle.

LMCS 0xFFA2 Not Applicable. Lower Memory Chip Select: Unused.
MMCS 0xFFA6 0x41F8 Mid Memory Chip Selects: 0:0 to 0x7FFF:F (512K block).
MPCS 0xFFA8 0x2000 Peripheral Chip Select: Starting at 0, PCS5/6 latch Al &

A2, PCSx go active for I/O bus cycles, requires bus ready
be active to complete bus cycle (applies to PCS4-6), no
wait states inserted for PCS4-6.

Table 4. Memory And Peripheral Chip Selects.

39

Before hardware peripherals of the system controller are initialized, Startup also configures the

M80C186XL TimerO, used as a system clock, and the interrupt controller to temporarily disable all

interrupt sources. Startup then configures the hardware peripherals. The PPI configuration ensures the

device is setup for bi-directional data exchange with the correct handshaking (discussed in more detail

later), and places certain control lines to their correct assertion levels. The Modem Power control bit

(active LOW) is turned off (programmed to a 1), the EDAC reset line is set on (programmed to a 1), and

the RF enable is turned off (programmed to a 0). After the PPI, SCC configuration follows, placing the

device in the correct modes for synchronous communication for Port A, and asynchronous communication

for Port B.

2. Memory Check and Clear
During Startup, before interrupts have been enabled and before a stack has been created and

activated, the entire RAM is briefly checked for errors and in the same process the memory cells are

cleared, removing the possibility of later RAM accesses causing EDAC soft or hard errors. First a write

followed by a read of the data 0x55 and OxAA is performed in the entire RAM. The purpose of this

alternating bit pattern test is to determine if there are data bus problems, bad devices, or chip select failures.

However, this test only tests the ability of a device to hold data, but not that the devices are being addressed

correctly. Thus, another test is performed which writes unique data to each location and then reads back.

The unique data will be a 257-bit repeat test, e.g. cell 0 will get the value 0, cell 1 gets 1,.... Cell 256 gets

256 (modulo 256 = 0), cell 257 gets 257 (modulo 256 = 1). Then the pattern repeats so that cell 258 gets 0,

cell 259 gets 1, etc.

In the event that memory cells fail a test, the software system will attempt to map out the bad cells

if possible. However, if errors occur in the interrupt vector table, there is no mapping solution. The

System Controller will force itself to fail to update the EPS watchdog timer, thus shutting itself down.

3. Data Relocation
Since all data (constants and variables) of any C software module are embedded within the ROM

and may at some later point be relocated to RAM, data relocation is a necessary step for proper

configuration of the C runtime environment. True constants (never modified data references) may remain

in ROM. However, any variable which is not created on the C runtime stack, must be relocated and

possibly initialized in RAM. The data relocation performed for PANSAT is based upon standard

techniques [Ref. 34].

As already discussed, the 80C186 hardware architecture uses the concept of segments to organize

physical directly-addressable memory. Software also uses the word segment. Segment, in the context of

software, can refer to a physical 64 kbytes segment of the 80C186, or also a logical grouping of data or

40

code. DGROUP is a group of like data segments particular to the Microsoft C Compiler for code

generation of a memory reference model called the Small Model. Small Model programs are by definition

fixed in data segment size to a physical segment size of 64 kbytes (directly related to the 80C186's

architecture) and fixed in code segment size to also 64 kbytes. However, the data and code segments

occupy separate physical segments, and thus provide up to 128 kbytes of code and data. As a convenience

to the compiler and linker, data groups are created to collect similar types of data references [Ref. 35].

Data relocation begins by clearing any initialized data area in the DGROUP group. Initialized

data is any data that is a variable, not created on the runtime stack, and is given a specific value at the time

of code composition. Thus, it is necessary that this prior, initialized, value given to this variable must be

preserved. As all of these initialized variables are relocated to RAM, their values are preserved.

Data relocation continues with uninitialized data area in the DGROUP group. Uninitialized data

is any data that is a variable, not created on the runtime stack, and is given no value at the time of code

composition. Thus, it is assumed that any prior value given to this variable is not of importance. As a

matter of consistency, all of these uninitialized data references are relocated to RAM and forced to the

value of zero.

4. Floating Point Emulation
Although the 80C186 contains hardware and software hooks to allow a companion floating point

coprocessor, namely the 80C187, this option was not used for various reasons. Primarily, in the style of

attempting to make a lean system controller, floating point arithmetic is considered a luxury and

minimizing its use is practical. Also, this coprocessor, like many floating point processors, is a heavy

power user consuming about 50% more power than the M80C186XL alone. Furthermore, using software,

floating point arithmetic can be emulated. This emulation occurs at a great sacrifice of CPU cycles since

some floating point instructions can take hundreds of more CPU time when emulated. However, floating

point arithmetic is minimized.

The software tools used for linking and absolute address location provide a ROMable floating

point emulation library. Within the Startup are subroutine calls to the floating point library initialization

routines. In cooperation, the C compiler when compiling translates all floating point expressions to a series

of calls to subroutines.

5. C Runtime
Prior to the transfer of control to the code of the collection of C-composed modules, appropriate

hardware interrupts are masked on, e.g. EDAC and Timer2. Furthermore, a runtime stack is created so

that an area of RAM is set aside for stack-related operations. The stack for the C runtime environment is 4

41

kbytes of EDAC-controlled RAM, located just after the interrupt vector table. The stack creation actually

occurs just prior to the calling of the floating point emulation routine. Transfer of control is accomplished

by calling the main C software module, named mainQ. If ever main() should terminate, the code following

this call turns off interrupts (not allowing the clock and Watchdog support software to operate) and finishes

with a HALT instruction.

D. CPU SUPPORT

1. Timers and Interrupts

a. Timers
The Timer/Counter Unit, integrated within the M80C186XL [Ref. 12], supports three (3)

independent 16-bit counter/timers. These timer/counters are used to generate a system clock implemented

by the operating system, and other time-dependent functions. Table 5 shows the use of each timer.

Timer Function
0 Transmitter time-out (feeds clock to Timer 1)
1 Transmitter time-out (gates RF Enable)
2 System Clock (operating system)

Table 5. Timer Allocation.

Cascaded, Timers 0 and 1 can provide a maximum timer of 38.84 min (each timer is

updated every VA CPU clock which is 0.542535usec, 216*216*0.542535usec). Timer 0 is programmed to

run continually using PCLK as a clock and given a maximum count value of 216, providing a 35.5 msec

clock for Timer 1. Timer 1 uses Timer 0 as its input clock. Using the dual count mode as a one-shot timer,

Timer 1 is programmed to stay low when enabled for 10 seconds using a Count A value of 1 and a Count B

value of 281. The output of Timer 0 is inverted before it is gated and passed off the System Controller

board to the RF unit, providing an active high signal. Ten seconds is a suitable length of time to enable the

transmitter, and yet provide an automatic turn off mechanism.

Timer 2 is programmed to interrupt the CPU at a frequency of 60 Hz, providing a tick

counter to implement a system clock. This timer uses a maximum count of 30720 in a continuous count

mode. The interrupt service routine counts the interrupts to maintain a second counter. Two API functions

provide the ability for software to read and set the second counter, based on UTC from 1 January 1970.

Thus, when PANSAT is reset, it begins with a date of 1 January 1970 until otherwise programmed by the

NPS ground station. A 32-bit second counter allows dates until 2106. Within the clock ISR is the chaining

to the EDAC RAM Wash subroutine which is explained in more detail later in this chapter.

42

Function iName Description
get_time() Get UTC time in seconds (elapsed

time in seconds since 1 Jan 1970).
set_time() Set UTC time (elapsed time in

seconds since 1 Jan 1970).

Table 6. Clock API functions.

b. Interrupt Priority Structure

The Non-Maskable Interrupt (NMI) is the highest priority interrupt and will be disabled

via hardware to prevent this event from occurring unless the Error Detection and Correction (EDAC)

circuitry is enabled. Maskable interrupts are the most common way to service the external hardware

interrupts. Globally, software can enable or disable the maskable interrupts. Maskable interrupts have

priorities among themselves which are determined by the programming of the interrupt control unit and the

support circuitry. Exceptions occur when an unusual condition prevents further instruction processing until

the exception is cleared. Software interrupts are generated by software using the INTn instruction. The

M80C186XL handles exceptions and software interrupts in the same way as hardware interrupts and are of

lower priority than the maskable (hardware) interrupts. All unused (undefined) interrupt vectors are

initialized to point to OxOFFFFO, the Reset vector, so that if an undefined interrupt occurs, the system will

perform a reset. Table 7 shows the interrupt vector use.

43

Interrupt
Vector
Number

Interrupt Function

0 Divide-by-zero
1 Single Step
2 NMI
3 Breakpoint
4 Overflow
5 Undefined
6 Invalid Opcode
7 Escape Opcode
8 Timer 0
9 Undefined
10 DMAO
11 DMA1
12 INTO (SCC - 85C30)
13 INT1 (A/D - LM12H458)
14 INT2 (EDAC Hard Error)
15 INT3 (EDAC Soft Error)
16 Undefined
17 Undefined
18 Timer 1 (Transmitter time-out)
19 Timer 2 (SCOS clock tick generator)
20 - 255 Undefined

Table 7. Interrupt Vector Allocation.

2. EDAC (Setup and RAM Wash)
Error Detection And Correction (EDAC) memory will cover all addressable Spacecraft Software

system RAM and will ensure the state of memory which is within the data and code addressing range of the

M80C186XL. The memory decoding is designed such that all of the 1/2 Megabyte of direct addressable

memory, from 0 to 0x7FFFF, is EDAC RAM for the CPU. With the EDAC circuitry enabled, all memory

cycles to RAM, either byte or word size, will be intercepted by the EDAC. Each write generates error

correction patterns which are recorded as well as the data. Each read retrieves the data as well as the

correction patterns to determine if the data read is correct, is correctable (soft error), or is not correctable

(hard error). The EDAC will indicate these two types of error to the M80C186XL via interrupts. The soft

error produces a maskable interrupt, INT3. The hard error produces a maskable interrupt, INT2.

There are two errors associated with a RAM memory cycle. The first error is called a soft error

and is completely correctable. With a soft error, the EDAC is able to reconstruct the correct bit pattern of

the byte or word cell. The EDAC will respond to a soft error by sending the correct byte or word and then

asserting an interrupt. The interrupt service routine (ISR) is responsible for remembering at what time the

soft error occurred. The second error is a hard error which is not correctable. In the event of a hard error,

the EDAC asserts another interrupt. The soft error service routine will first save the necessary registers on

44

the stack. Then a message indicating that a soft error occurred will be sent to the Event Logger. The soft

error service routine will then restore the registers and return from interrupt service. The hard error service

routine must assume that any RAM cell is corrupted and cannot necessarily be corrected, because the

location cannot be determined. Therefore, this service routine will suspend all interrupts, place all the

hardware systems into an idle or off state, and then reboot the M80C186XL by jumping to the boot vector.

a. Initial RAM Clearing

Upon microprocessor RESET (during startup), the EDAC Hard and Soft Interrupts are

turned off. All RAM cells are subject to the checking and clearing process described earlier in the startup

module. Then the EDAC Hard and Soft Interrupts must be cleared. This is accomplished by placing the

EDAC Hard/Soft Interrupt Clear signal momentarily low (at least one bus cycle). Finally, the EDAC Hard

and Soft Interrupts are turned on. Note that the EDAC circuitry is always operating, however software can

ignore EDAC error signals when necessary. Initial RAM clearing can be performed as word write

operations, reducing the time required to perform the initialization process.

b. RAM Wash
The process of performing a RAM wash involves a regularly scheduled software task to

read data from RAM. However, the data does not need to be written back. The hardware design

automatically writes back a data word that is incorrect (1 bit error, correctable). This process will cause the

EDAC circuitry to reset the correction patterns. In the event that a RAM cell develops a bit error, it is

desirable that a RAM cell is washed before the RAM cell develops a second bit error. If the wash occurs

before the second bit error, the cell and the correction pattern will be updated, reflecting no errors. In the

event that a second bit error occurs before the RAM wash, the data will not be correctable and a hard error

will be generated. RAM wash can be performed using word write operations. The frequency of RAM

washes must occur such that second bit errors do not occur.

As an initial rate of washing RAM, the RAM wash software performs RAM reads on

small blocks of continuous data and then returns control to another software routine. This is repeated over

and over again until the entire 512 kbytes of RAM have been washed. The process then repeats. A block

size of 256 bytes (128 16-bit words) can be washed quickly and simply using a REPS MOVSW which is

part of the M80C186 instruction set. There are 4096 separate blocks of 128 bytes within the entire 512

kbytes of RAM. A block wash cycle takes approximately 168 usec. Interrupts and DMA must be off.

An estimation of the number of SEUs expected in RAM was performed by Oechsel

[Ref. 21] based upon data from UoSAT-2, a microsatellite similar to PANSAT regarding its orbit and types

of electronics. Conservative assumptions indicated that the number of SEUs expected is l.Ox 10"6

SEUs/bit/orbit. This equates to an expected time between uncorrectable errors of 1.8 years (nearly the

45

expected lifetime of PANSAT). In particular, one assumption declares that the RAM wash will occur once

90 minutes 1.3184 sec ,_.

4096 blocks block

per orbit. This rate of washing appears suitable.

This frequency of beginning a block wash is an integral number. If a wash was initiated

every second, then the calling of the wash routine would be easy to implement into the clock ISR. This

imposes a very small overhead when considering CPU time associated with RAM washing:

c. Processing a Single Bit Error

The interrupt service routine (ISR) for a single bit error consists of removing the interrupt

1 block 168 /isec
— => , which corresponds to an overhead of 0.0168%. (3)

1 sec 1 sec

condition from the EDAC circuitry by toggling an EDAC control line via the PPI. The EDAC interrupts

are level-sensitive. This ISR must acknowledge the interrupt by incrementing a single bit error counter and

posting the time and date of the single bit error to the Event Logger. Because EDAC interrupts are level-

triggered, further single-bit error interrupt requests will not be detected while software is executing the

interrupt service routine. Single-bit errors cause a counter to be incremented, accumulating a count of total

single-bit errors.

d. Processing a Dual Bit Error

To reduce the chances of system failure, the dual-bit error interrupt service routine

should not be stored in RAM since it is susceptible to dual-bit errors. Because dual-bit errors are not

necessarily correctable, software should not attempt to continue operating on the system that experienced

the error. The dual-bit error interrupt service routine will place the processor into a halt condition, causing

the watchdog timer update to fail and thus shutting down the system controller and starting up the alternate.

E. MAIN
The convention in a C programming environment is for the function named mainQ to be the first

subroutine invoked when the C program is executed. This same convention is followed for the PANSAT

ROM Boot software with the exception that after a microprocessor reset, the Startup software executes

first, setting up a suitable runtime environment for the actual C program. A flow diagram of the PANSAT

ROM Boot software main() routine is shown in Figure 19.

46

ROM Boot Loader.

s

Clock ISR. *s

s \

AID ISR. J

r \

SCC ISR. •

f
DMA ISR. *)

Setup.

Check
Telemetry. *

Battery Charge
Monitor.

RF Listen
Setup.

Check/Process
Command

Reset Watchdog
timer.

Check
Hardware
Scenarios.
 x

STPI Check.

 z

RF Transmit
Setup.

Figure 19. ROM Boot Loader.

This diagram begins with a block named Setup which initiates the Interrupt Service Routines,

represented on the left side of the diagram. Setup also initializes many variables used to control the Boot

Loader loop. The loop calls each of the blocks shown within the loop on a continual basis. Since a multi-

tasking operating system is not present within the ROM Boot Software, this software loop depends on each

subroutine called to transfer control back to the main loop on a timely basis.

The loop begins by checking telemetry (obtaining the most up-to-date sensor data possible), next

is a check on the battery charging, followed by monitoring the RF system for receiving NPS-based

transmissions and subsequently transmitting a response. Since this software is also used for testing and

integration purposes before spacecraft deployment, the Serial Test Port Interface (STPI) is monitored in

case an external computer is sending requests. Next, any incoming command either via the RF system or

the STPI is verified and processed. In case there is an apparent hardware failure, alternate hardware

configurations are checked and used. And, finally the watchdog timer on board the Electrical Power

Subsystem is reset, indicating that the software is functioning and the System Controller that is currently

47

operating should remain so. The loop then repeats. In the event of successful operation of the Boot

loading process, a secondary loader will be uploaded from NPS to the spacecraft. This secondary loader

will then take control. The ROM Boot Loader will cease to operate. These higher-level software services

are discussed in more detail in the following chapter.

F. PROGRAMMABLE PERIPHERAL INTERFACE
The Programmable Peripheral Interface (PPI) [Ref. 16] has multiple functions, interfacing with

several spacecraft components. The primary use of the PPI is to control the Peripheral Control Bus (PCB)

which is discussed later in this section. The PPI also serves to control the EDAC circuitry with three

control lines, and performs the Modem mode select using two control lines.

1. EDAC Control
The PPI has one control line which interacts with the EDAC circuitry. This control line is used to

acknowledge to the EDAC that either a hard error or soft error was received and the EDAC state machine

should clear the error. Failing to clear the EDAC hard/soft error will result in the continual assertion of

that condition. This control line can clear the errors by forcing it low and then high again, (presumably

during the interrupt service routine); normally, this control line should remain high.

2. Peripheral Control Bus
The Peripheral Control Bus (PCB) provides the interConnectivity between all of the functional

subsystem electronic components of the spacecraft. This bus identifies each peripheral with a unique

address, transmits eight bits of data, and accomplishes this data transfer with read and write control lines.

3. PPI Control Interface
The active System Controller has control of a PPI by selecting the device associated with PCS1.

This PPI is programmed to Mode 2 (strobed bi-directional bus I/O) with a value of OxCO to the control

port. This allows control of the PCB as well as the three unused control lines for the EDAC and Modem

mode selection controls. The configuration of the 8255 and its port assignments are shown in detail in

Appendix D.

4. Peripherals of the Control Bus
The RF system and the EPS on this bus are not duplicated; all other peripherals are paired. Thus,

there are two System Control peripherals, containing a System Controller (SCA and SCB), two Analog

MUX (AMA and AMB), and two Mass Storage units (MSA and MSB). The least significant bit in the

device selection chooses between one of the two ports of the device. Note the distinction of this versus the

48

sub-address bits (bits 5 and 4); these bits feed through to the selected port, as in the case of addressing a

PPI which requires 2 address lines for the PPI registers. The table below identifies each peripheral and

indicates the corresponding addresses.

System Name System |S3 - SO)
Address

.-System' *|
Address

RF System 0000, 0001 0,1
Electrical Power System 1000, 1001 8,9
System Control A 0010,0011 2,3
System Control B 1010, 1011 OxA, OxB
Analog MUX A 0100,0101 4,5
Analog MUX B 1100,1101 OxC, OxD
Mass Storage A 0110,0111 6,7
Mass Storage B 1110,1111 OxE,OxF

Table 8. Peripheral Control Bus Devices.

5. Reading from the Control Bus
1. Place peripheral select and device sub-address in Port B.
2 . Set the Read bit to Low to indicate beginning of read.
3 . Toggle the input strobe (STB) to load the data into the input latch.
4 . Set the Read bit back to High to indicate end of read cycle.
5 . Read the data from Port A.

Writing to the Control Bus
l. Place data in Port A.
2 . Place peripheral select and device sub-address in Port B.
3 . Toggle the Write bit (High to Low to High) to force the write.

7. Software Interface
A software interface to allow application tasks to talk to peripherals on the Peripheral

Control Bus requires a function to read from a peripheral, and to write to a peripheral. Reading and writing

follow a very similar sequence of operations on the control bus.

a. Application Programming Interface
The low level software interface functions, available to a task, are identified below.

49

Function Name
pcb_portc()
pcb_power()
pcb_init()
pcb_read()
pcb_write()

Description
Toggles Port C control bits (0, 1, and 2).
Toggles power control bits in EPS for each subsystem.
Initialize the Peripheral Control Bus.
Reads a peripheral on the control bus and returns the byte.
Writes a specified byte value to the specified peripheral.

Table 9. Low Level Peripheral Control Bus Software Interface.

b. Timing Requirements

Reading and writing the PCB are fundamental operations that most software modules use

extensively. Thus, it is necessary and useful to determine the amount of time these operations cost. The

pcbwriteO function takes 180 clocks, and thus at 7.3728 MHz takes 98 usec to complete. The pcb_read()

function takes 220 clocks, requiring 119 usec. The consequence of the times required are most obvious in

the management of the Mass Storage units; this is discussed in a later section.

G. ELECTRICAL POWER SUBSYSTEM
The Electrical Power Subsystem (EPS) is responsible for generating the power delivered to all

other systems within the satellite. Using the Peripheral Control Bus, the switches on the EPS can be

toggled. The EPS contains eight ports which contain various switches to control EPS battery functions and

to power on/off other devices on the Peripheral Control Bus. Software will keep track (via copies of the

EPS registers) of all of the settings for all of the EPS ports. Appendix E contains many tables that describe

the EPS ports and the switch assignments of the ports.

1. EPS Port Organization
Ports 0, 1,2, and 3 of the EPS are used to control the configuration of the EPS. Port 0 controls the

batteries (charge, discharge, and on-line). Port 2 controls the power to the subsystems; this port also

contains the current inhibit switch used while reading currents. Ports 1 and 3 control multiplexers on the

EPS which are used to select voltage and current measurements. Port 4 is the Watchdog Timer reset

switch. Port 5 is used to read back the direction of the current sensors (the only read port via the PCB on

the EPS). Ports 6 and 7 are not allocated; however, Port 7 is selected when the Watchdog timer needs

toggling (Port 4 written, and then Port 7 accessed in order for Watchdog timer to latch the update request).

Ports 0, 1,2, 3, and 5 are described in detail in Appendix E.

50

2. EPS Cell Voltage Multiplexing
EPS voltage and current measurement signals are all multiplexed onto one analog signal and

delivered to the LM12458 A/D converter on-board the System Controller. The following section describes

the addressing needed to perform EPS voltage and current measurement selections.

a. Low Battery Cell Voltage Selections

The Low Battery Cell Voltage MUX is used to select certain battery cells for voltage

measurements associated directly with the Low Cells (0 and 1). This MUX is also used to index into the

Medium and High Cell Voltages MUXes. To select battery cells 0A, 1 A, OB, IB for voltage

measurements, only Port 3 needs to be used. Since Port 3 is used to index into the Medium Cell Voltage

MUX, these control bits are zeroed when only selecting cells 0 and 1.

b. Medium Battery Cell Voltage Selections
The Medium Battery Cell Voltage MUX requires manipulating the Low Cell Voltage

MUX as well as the Medium Cell Voltage MUX. Prior to selecting the Medium Battery Cell Voltage, the

Low Battery Cell Voltage MUX must be set correctly. Since the control of the Medium and Low Battery

Voltage MUXes are controlled both with Port 3 of the EPS, all of the selection actions can take place in

one write to Port 3. The four least significant bits (1111) set up the Low Cell MUX to allow Medium Cell

MUX selections to pass through.

c. High Battery Cell Voltage Selections
The High Battery Cell Voltage MUX selection method depends on the cell. Cells 5A/B,

6A/B, and 7A/B require the following selection method. First, select the High MUX input through the

Low Cell MUX (Port 3 = 0000 1000). Furthermore, the Current Select must be kept disabled (Port 1: bit 0

= 0). Then, via Port 2, make a selection. Cells 8A/B and 9A/B require the following selection method.

First, select the High MUX input through the Low Cell MUX (Port 3 = 0000 1000). Furthermore, the

Current Select must be kept disabled (Port 1: bit 0 = 0).

3. EPS Cell Voltage and Current Multiplexing
The eleven current sensors are used to read roll rate experiment currents and also the solar panel

and battery currents. The Low Cell Voltage MUX selectors are used to index voltage measurement, as

well as the current selectors. Prior to current selections, Port 3 should be set to allow current selections to

be made; this is accomplished by setting Port 3 = 0000 1100 (for roll rate), Port 3 = 0000 1010 for batteries

and solar panel bus. Then the current selection is made. After the address selections, the Spacecraft Power

Current Inhibit control must be disabled (i.e. enabled) by setting Port 1, Bit 0 to 1. Then, the Spacecraft

Power Current Strobe must be strobed from high to low to high (Port 1, Bit 1). Then a reading can be

51

made. Following the A/D reading, the Spacecraft Power Current Inhibit must be set again (Port 1, Bit 0 set

to 0). Appendix E shows the configurations needed for current measurements.

H. SERIAL COMMUNICATIONS

1. Modem Control
A System Controller operates the Modem using I/O commands issued from the CPU. The

Modem has a set of registers within the PA-100 [Ref. 17] and a separate 8-bit latch. Furthermore, a SC has

the ability to turn on and off the entire Modem board via the PPI control port C bit 0. Modem setup and

control requires a set of registers within the PA-100 to be configured in a certain sequence. Furthermore,

feedback from the PA-100 is also required. In order to simplify the programming interface to control and

monitor the Modem board, two functions exist to assist high-level layers of software. A data structure can

be created which contains a pair of data, an address and a value associated with that address. The address

corresponds either to a register within the PA-100 or the 8-bit latch, and the value corresponds to the data

to be placed at that address. Thus, tables are sent to the Modem board when a new configuration is

desired.

2. RF Control
The RF unit [Ref. 36] is controlled via the PCB using one 8-bit latch. Logic within the RF unit

along with settings made by a System Controller control the selection of a low noise amplifier (LNA), a

high pass amplifier (HPA) and a corresponding power level, a local oscillator (LO), the power applied to

the selected LNA and also HPA, and control of transmit and receive switches. A System Controller has

primary and alternate components (LNA, HPA, LO) within the RF unit. The RF unit takes a System

Controller's preferences via PCB commands (Table 10) as well as which SC is active and enables the

correct components.

RFPCB
Control Port Bit

Control Bit'Na me

HPA
LNA
PI
P0
LHP/LHA
LOP/LOA
Tx/Rx
T/R

Description

0 = Selected HPA off, 1 = Selected HPA on
0 = Selected LNA on, 1 = Selected LNA off
Power level control (most significant bit)
Power level control (least significant bit)
0 = Primary LNA/HPA, 1 = Alternate LNA/HPA
0 = Primary Local Oscillator, 1 = Alternate Local Oscillator
0 = Transmit, 1 = Receive (Signal Path Relay)
0 = Transmit, 1 = Receive (Antenna Relay)

Table 10. RF Unit Control Port.

52

API function calls are provided for ease of programming as well as making the source code very

explicit to understand regarding the references to the RF unit. The functions are shown in Table 11.

Function Name Description
rf_power() Toggles power on and off to the RF unit.
rf_set() Sets a particular RF control bit via the PCB.
rf_timer() Starts the Transmitter timer using Timers 0 & 1 of the CPU.
rf_txpower() Sets transmit power using the 2-bit attenuator on the RF unit.

Table 11. RF API function calls.

3. SCC Drivers
One master interrupt service routine (ISR) handles the input and output services of both Channel

A (synchronous) and Channel B (asynchronous) of the Serial Communications Controller [Ref. 28].

Channel A I/O is handled with DMA, except the special conditions which cause an interrupt. However, all

I/O for Channel B is handled within this service routine. Since the SCC has only one interrupt source into

the CPU, all SCC interrupt conditions invoke this one ISR. All conditions are checked within this ISR and

are handled on a priority basis. The condition checking repeats within the ISR until all SCC interrupt

conditions have been serviced. An outline of the master SCC ISR is shown in Figure 20.

Figure 20. SCC Interrupt Service Routine Structure.

53

a. Asynchronous Services
A variety of software routines allow control of Channel B of the SCC, providing an easy

yet sophisticated interface with the asynchronous communications port. The core drivers that allow input

and output to Channel B are serial_out() and serial_in(). These functions simply insert or remove

characters into buffers that are handled by the interrupt service routine. At a higher-level, software

routines allow command line input and C Standard Library like printf() capabilities for complex display

output.

b. Synchronous Services
Synchronous data is received and transmitted in blocks as packets. All higher-level

software modules ultimately want to send a packet of data or receive a packet of data. Since all

synchronous I/O is handled with the DMA between the memory and SCC, packet send and receive requests

require an initial DMA setup, and some follow up after the transaction. Since the satellite only works in a

half-duplex mode, assumptions regarding the state of transmit and receive are made and simplify the

design. When not transmitting, the SC places the SCC into a receive mode with the DMA already set up to

transfer incoming data bytes. Thus, during this time, it is not necessary to set up anything regarding the

transmission of data. When data is required to be sent out a packet is placed into a buffer and remains

there until the receiver is finished with packet reception. Then, the transmitter is set up, including the

DMA. During this time, it is not necessary to set up anything regarding the reception of data.

Synchronous services are complicated by the fact that besides the SCC, communications

through Channel A also rely on the PA-100 modem and the RF unit. Thus, the PA-100 and RF unit require

some monitoring in case there is a failure. Failure may only be due to a functional mode of the hardware

and not circuit failure. Thus, these units may need to be reset or programmed with different parameters.

Furthermore, extended failure may require a different hardware configuration to be chosen.

I. TELEMETRY

1. Scheduling of the LM12H458
Telemetry from sensors (voltages, currents, and temperatures) is routed onto the inputs of the A/D

converter on the System Controller, the LM12H458 [Ref. 24]. An interrupt service routine (ISR) is

responsible for completion of data conversion, and scheduling of another acquisition under the automated

function of the A/D converter. Since the LM12H458 can be given a program which is a sequence of data

acquisition steps which can be run independently of the CPU, the A/D converter is programmed to make

several acquisitions across multiple input sensors without intervention of the CPU.

54

In order to simplify the software responsible for operating the A/D converter, a schedule was

created that indicates for any sequence in the data acquisition, which sensor signals are to be accessed and

converted. The entire data acquisition cycle was broken up into 42 periods, numbered 0 through 41. After

the 41* period, all sensor data has been read and converted at least once. Since some data points need

more frequent readings than others, certain sensors are read multiple times during the 42 periods. The

sensors from the EPS require multiple readings per period. The CPU must store the converted values at the

end of each Period and prepare the LM12H458 for the next Period before resuming other activities.

Appendix F shows the schedule of A/D conversions.

2. LM12H458 Setup and Interrupt Service Routines
Three subroutines implement the software necessary for data acquisition. The first is an

initialization routine which programs the LM12H458 into the desired mode, calibrates it, programs the first

sequence of acquisition instructions, and finishes leaving the LM12H458 running independently.

Another, the core of the acquisition, occurs within the Interrupt Service Routine for the

LM12H458, diagrammed in Figure 21. At the end of each data acquisition Period, which can have up to 5

converted samples or as few as one, this routine is invoked via a hardware interrupt. If necessary, current

directions are read for the just completed acquisition. If temperature sensors are used for the following

acquisition period, the TMUXes are programmed. Furthermore, the EPS is programmed to multiplex the

soon to be read sensor. Finally, the LM12H458 instructions are programmed and the service routine is

finished. After the completion of all 49 Periods, this ISR also sets a flag to notify other software tasks that

a complete set of new data has been converted. Also, at the completion of the last Period, the LM12H458

is instructed to complete a calibration, and thus control of the CPU is returned to other software tasks. The

completion of the calibration causes another ISR to program the LM12H458 to begin again.

55

Main ("Pause") ISR
forA/D(LM12H458)

/ Stop the /
/Sequencer./

=tead A/D FIFO
Store samples.

Figure 21. A/D Main ISR.

56

3. Data Gathering - Temperature Multiplexers
All temperature signals sensed using thermistors (all temperature measurements except two IC

temperature probes on the System Controller and Modem boards) are multiplexed onto the Temperature

Analog Multiplexing units (TMUX) [Ref. 37]. These signals pass through an appropriate signal

conditioning circuit and are then available to the LM12H1458 for analog-to-digital conversion. This

conditioned analog signal is passed to the LM12H458, on-board a System Controller. All of the TMUX

selections are controlled using the Peripheral Control Bus.

TMUX control is handled by four address lines and four selector lines using the Peripheral

Control Bus. All multiplexers are fed the same address lines. However, four separate selection lines

provide the TMUX enabling to each individual TMUX. The following table indicates the assignments of

the bits that describe the TMUX configuration.

Bits Function
7 Unused
6 Unused
5 MUX 1 Select (subaddress) Channels 16-31
4 MUX 0 Select (subaddress) Channels 0-15
3-0 MUX Address (applies to each MUX)

Table 12. TMUX Control.

Temperature sensors are named TSx, where x is a number beginning with 0. Temperature sensors

which deliver a signal to TMUXA are even numbers (including the beginning 0), and temperature sensors

to TMUXB are odd numbers. Furthermore, all sensors are redundant, for every sensor providing a signal

to TMUXA, another sensor exists to provide the same sensor location to TMUXB. The number system is

such that if x is a sensor for TMUXA, x + 1 is the redundant sensor for TMUXB.

4. Data Conversion
Data conversion for voltages, currents, and temperatures are explained in this section. Note that N

is an unsigned value from the A/D converter. And where appropriate, SIGN is either +1 or -1 and

determined from reading the current direction sensor.

a. Battery Current Conversion
The current going into (positive) or leaving (negative) a battery is determined using

Equation 4.

/ = 2*SIGN* N'
4095

-2.5 = SIGN*{N* 0.002442 -5) (4)

57

b. Spacecraft Bus Current Conversion

The calculation of the spacecraft bus current is identical to the conversion of the battery

current except that there is no direction, and thus the use of SIGN is eliminated, Equation 5.

1=2 W*(—1-2.5
W095.

= N* 0.002442 -5 (5)

c. Battery Voltage Conversions

Battery voltage measurements are accumulated voltage readings across cells in series.

Starting with cell 0 as the first cell in series, each successive cell has a voltage measurement across the

entire series, and not the individual cell. Accumulated Cell Voltages require a conversion weight, W

(Table 13), which depends on the cell.

Cell Battery A sMtteiryJB ;'*'-"
0 1.0 1.0
1 1.0 1.0
2 1.6953 1.6969
3 1.6997 1.7015
4 1.7014 1.7029
5 2.4267 2.4283
6 2.4262 2.4314
7 2.4311 2.4317
8 4.9 4.93

Factor (W) Factor (W)

Table 13. Battery Voltage Conversions.

First, the accumulated cell voltages are converted (Equation 6). These accumulated cell

voltages are the steps of voltages measured across the entire cell series, starting with cell 0 as the base cell

with direct reference to ground.

N:

4095
W = 0.001221* TV *W (6)

Next, each individual cell voltage can be calculated by subtracting the cell's accumulated

voltage from the cell previous to it, with exception of the first cell, cell 0. This is shown in Equation 7.

V(i) = Va(i)-Va(i-l),

V(0)=Va(0)

l<i<8
(7)

58

d. Thermistors
An Omega 440048 thermistor's [Ref. 38, p. D-4] temperature value is converted using a

table lookup. This is because the conversion is based upon the mathematically intensive Equation 8. The

table lookup performs a binary search where there are a maximum of seven compares needed for a lookup.

The table is used by taking the value from the A/D converter and finding the closest match in the table.

The position of the match in the table indicates the temperature of the sensor. Appendix G contains a

complete discussion of the conversion process.

T =

R =

A + B*\n(R) + C*[ln(R)]

V_

Ic

-273.15

where R is the resistance of the thermistor, (8)

V is the voltage sensed across the thermistor,

and \Q is the Calibration Current. A, B, and C are coefficients

choosen to best fit temperature values in the range from -0 Cto30 C.

A = 9.306xlO"4,B = 2.218x10" 4,C = 1.253xl0"7.

e. Temperature Sensors (ICs)
Conversion of the IC temperature sensors is straight-forward as shown by the

relationship expressed in Equation 9.

r = (iV-0.5)*100 (9)

5. Data Recording
At regular intervals, preset to every minute but modifiable by command from the ground station,

all of the sensor data and various software statistics are saved to the mass storage devices. The purpose of

recording this data is two-fold. First, the system software uses this recorded data to make decisions, in

particular when the satellite has a power reset, or a System Controller is turned off and its alternate turned

on. When powered on, a System Controller attempts to find previously saved data in the mass storage

which will describe the prior state of the satellite. In the case of the first time the satellite operates (i.e.

after launch), the mass storage is completely initialized. The Battery Charge Monitor (discussed in the next

chapter) relies on this recorded data to make intelligent decisions regarding the state of the batteries if

59

possible. The data is recorded so that it is accessible to the ground station for detailed analysis. An

overview of the telemetry record contents is shown below in Table 14. A detailed description of the

telemetry record is found in Appendix J, documented in the software source code.

Item.::
? Quantity Description

Time/Date 1 Spacecraft time and date recorded in number of ticks (60 Hz).
Temperatures 37 Temperatures of modules, batteries, and solar panels.
Voltages 19 Voltages of battery cells and spacecraft bus.
Currents 11 Currents of batteries, spacecraft bus, solar panels.
Hardware Configuration 37 Subsystem port settings.
BCM 24 Battery Control Monitor parameters.
EDAC Errors 1 Number of EDAC soft errors.
SU Fails 1 Number of superuser access attemps that failed.

Table 14. Telemetry Record Contents.

J. MASS STORAGE INTERFACE
A mass storage unit (MSU) provides four megabytes of Static RAM (SRAM) to serve as file

storage for the Spacecraft Software. This unit is intended to save user messages (mailbox storage) and

archived telemetry. In addition, half a megabyte of Flash storage is available for duplicating telemetry.

1. Hardware Interface Via the PCB
The MSU is a data storage device of both volatile and non-volatile solid state memory devices.

The data address to be accessed is presented and the appropriate control (read or write) is indicated. Four

and a half megabytes of random access storage are incorporated within the Mass Storage Unit. The

Peripheral Control Bus is used to interface the Mass Storage Unit and the System Controller. A PPI is

located at base address of the Mass Storage PCB address (see Table 15). Twenty-two bits of the PPI are

used to latch an address. There is one read signal and one write signal, and one additional signal used to

indicate if SRAM or Flash is to be accessed. Table 16 indicates addressing and control usage within the

PPI.

60

PCB
S3-S0

PCB
Al-AO

UsageibrMaSs Storage Units

Mass Storage A
6 0 PPI Port A
6 1 PPI Port B
6 2 PPI Port C
6 3 PPI Control Register
7 0 Data (read and write)

Mass Storage B
E 0 PPI Port A
E 1 PPI Port B
E 2 PPI Port C
E 3 PPI Control Register
F 0 Data (read and write)

Table 15. Mass Storage Unit: PCB Interface.

PPI Port Bits Used Usage for ntrol
Port A D0-D7 Memory Addresses (AO - A7)
PortB D0-D7 Memory Addresses (A8 - A15)
PortC D0-D5 Memory Addresses (A 16 - A21)
PortC D6 Select: 1 = Flash, 0 = SRAM
PortC D7 Unused

Table 16. Mass Storage Unit: PPI Interface.

For initialization, the PPI should be programmed as an output only device (Ports A, B, and C all

8-bit outputs); this is accomplished by writing a 0x80 to the PPI Control register. Port C controls both the

selection of either the Flash or the SRAM devices and the most-significant address bits of both device

types. Since selected Flash devices draw less current than selected SRAM devices it is best to select the

Flash devices when a Mass Storage board is powered on (but not being read or written to). Furthermore,

Al 8 and Al 9 select only high address bits of the SRAM; selecting a Flash device in this address range

causes a non-existent Flash device to be selected, drawing even less power. Therefore, a powered-on Mass

Storage board, when not performing reading or writing, should have its Port C set to 0x48.

2. Software Interface
Device driver software allows the functions of formatting (clearing memory in preparation of

writing data), writing to, and reading from the Mass Storage units. Although the entire memory space of

one mass storage can be addressed as a continuous address space, due to logical use of the memory, the

memory space is visualized and thus segmented into two memory types: the volatile 4 Mbyte SRAM, and

the non-volatile 'A Mbyte Flash.

61

a. Reading and Writing Requirements

Reading from either type of memory is straight-forward. An address is programmed into

the PPI on the Mass Storage board, and then a PCB read retrieves the value of the cell pointed to. Writing

to the SRAM is similar to reading, except a PCB write is issued. However, writing (and erasing) the Flash

involves writing specific address and data sequences into the command register of the Flash device

[Ref. 39] defines these register command sequences which allow writing, erasing, and checking

manufacturer and device type codes.

';.Coinmand|:
Sequence

First
Bus Write

Second
Bus Write

Third
Bus Write

Fourth
Bus Write

Fifth
Bus Write

Sixth
Bus Write

Ali values "■<'
•■.mpiit'lfex.^

Addr Data Addr Data ,:'AddrK.w Data Addr Data mdajr» iData;-»: Addr Data

Read/Reset 5555 AA 2AAA 55 5555 FO RA RD RA = Read Address, RD = Read Data
Scan 5555 AA 2AAA 55 5555 90 0/1 Code
Write 5555 AA 2AAA 55 5555 A0 WA WD WA = Write Address, WD = Write

Data
Erase 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 5555 10

Table 17. Mass Storage Unit: Flash Commands.

b. API Functions

API function calls for each memory type are provided for ease of programming as well

as making the source code very explicit to understand regarding the references to the Mass Storage

memories. These functions are shown in Table 18. For redundancy purposes, the ROM Boot Loader

software writes all recorded data to each Mass Storage unit and to both memory types. Thus, the data can

be quadruplicated. All records of data written to a Mass Storage device use a Cyclic Redundancy Check

(CRC) [Ref. 40] for read-back verification. The CCITT CRC-16 will detect all single-bit, dual-bit, odd

numbered, and bursts of fewer than 17 bits wide types of errors. Detection of other errors is about

99.997%. This is the same CRC algorithm as used within the SCC except that the seed CRC is 0 (instead

ofOxFFFF).

Function Name
msueraseflashQ
msureadflashO
msuwriteflashQ
msu_scan_flash()
msasetaddrQ
msuerasesramQ
msuread sram()
msuwritesramQ

Description
Erase entire Flash (sets cells to OxFF).
Read specified number of bytes from a specified address in Flash.
Write a specified number of bytes from a specified address in Flash.
Scan Flash devices for manufacturer and device type codes.
Set the mass storage address pointer to a specified location.
Erase entire SRAM (sets cells to OxFF).
Read specified number of bytes from a specified address in SRAM.
Write a specified number of bytes from a specified address in SRAM.

Table 18. Mass Storage Unit: API Functions.

62

c. Timing Requirements

Reading and writing to a Mass Storage unit takes a considerable amount of time

especially writing to the Flash memories. Therefore, it is critical that the amount of time required to

accomplish such operations is determined and taken into consideration when designing and writing the

device drivers as well as the high-level code that uses the Mass Storage. In general, reading and writing to

the SRAM, and reading from the Flash take a similar amount of time. However, writing to Flash is nearly

eight times slower. Since data may be read and written in blocks, a general formula was determined which

gives a per byte time requirement. Reading and writing data in blocks is preferred (rather than single byte

function calls) because the overhead of multiple function calls is reduced, and address incrementing

techniques can be exploited (e.g. only updating the address digits that change). Table 19 shows the formula

and the transfer time for 256 byte blocks.

Function Name Clock Cycles Required Per Byte Time (n-256)
msu_read_flash() Clocks = 1210 + n*(862) + (n-l)*(31) + 40 31 msec
msu_write_flash() Clocks = 320+ n*(7668) 266 msec
msu_read_sram() Clocks = 1207 + n*(862) + (n-l)*(31) + 40 31 msec
msu_write_sram() Clocks = 1207 + n*(834) + (n-l)*(31) + 40 30 msec

Table 19. Mass Storage Unit: Timing Of Operations.

This concludes the presentation of the System Controller software device drivers. These

drivers are necessary to provide simple and direct control of the hardware peripherals (electronics of the

System Controller as well as the electronic modules of the spacecraft). However, the goal of the software

developed for PANS AT is to provide a system which orchestrates all of the hardware of the spacecraft.

This software is referred to as the System Controller high-level software and is presented in the next

chapter.

63

64

VI. SYSTEM CONTROLLER HIGH-LEVEL SOFTWARE

A. DESCRIPTION
Upon completion of the hardware initialization and the creation of a runtime environment suitable

for higher-level layers of software, software progresses to the central loop contained in the module mainx.

Operation then consists of monitoring and charging the batteries while establishing primitive

communication with the PANS AT Ground Station at NPS to begin the upload of the Kernel and the PHT

loader. Thereafter, a higher level protocol will upload BAX, the primitive Telemetry collector, and an

AX.25-aware loader. Then, using AX.25, the FTLO protocol, the File System, and Bulletin Board services

software are uploaded. Finally, the spacecraft is ready for general use.

B. SERIAL COMMUNICATIONS - Serial Test Port Interface
The Serial Test Port Interface (STPI) is an asynchronous serial communication interface that

exchanges messages between the System Controller and an external computer acting as a Data Terminal

Equipment (DTE). The DTE is a dumb-terminal which is capable of sending data and displaying messages

sent from the SC. A large set of commands is implemented to operate and test the spacecraft via the STPI.

The command menu is shown below in Table 20. Responses from the commands (sent by the SC) vary

depending on the command; however, all responses print out as readable messages on the terminal.

65

Command Description Param. 0 Param.
1

Param.
2

Param.
3

Param.
4

in Input byte port-16
inw Input word port-16
out Output byte port-16 data-8
outw Output word port-16 data-16
peek Read byte segment-6 offset-16
peekw Read word segment-16 offset-16
poke Write byte segment-16 offset-16 data-8
pokew Write word segment-16 offset-16 data-16
dump Dump paragraph segment-16 offset-16

pcbr PCB read select subaddr
pcbw PCB write select subaddr data-8

ad A/D ISR control on/off
tlm Get recent telemetry

time: g Get time
time: s Set time date-time

bcm: p BCM: on/off on/off
bcm: c BCM: configure config data...
bcm: s BCM: status

eps:p EPS: power control device on/off
eps:b EPS: battery control battery switch on/off
eps:v EPS: read voltage select cell#
eps:i EPS: read current select sp#

msu:p MSU: power device on/off
msu:e MSU: erase flash device sector#
msu:r MSU: read device type address length
msu:w MSU: write device , type address length data....

tmux: p TMUX: power device on/off
tmux: r TMUX: read device channel #

modem:p Modem: power on/off
modem:m Modem: mode clear/spread/test
modem:r Modem: read status
modem:w Modem: write data...

rf:p RF: power control on/off
rf:c RF: configure config data...

sec: i SCC: initialize
sec: r SCC: read register register *

sec: w SCC: write register register data-8
sec: h SCC: hunt
sec: rx SCC: Receive
scc:tx SCC: Transmit length data...

Table 20. STPI Commands.

66

C. BATTERY CHARGE MONITOR
Two battery packs are within the spacecraft [Ref. 41]. Each battery pack consists of nine nickel-

cadmium cells with a standard capacity of approximately 4.4 AmpHours. The batteries are for eclipse

power and power regulation and conditioning circuitry while in sun-soak. The power system must be able

to switch from external solar power to internal battery power without major power spikes or fluctuations.

The EPS relies on the System Controller to activate switches and to determine charge levels of the

batteries. Both batteries will be depleted beyond the capability of operation at launch due to the storage

time between integration and ejection from the Shuttle. A trickle charge circuit provides battery charging

at the beginning-of-life while the spacecraft operates in the sunlight. This will allow a low power mode of

operation during eclipse in the very early stage of the mission until the batteries are sufficiently charged.

During spacecraft operation the battery control algorithm will use temperature, current, and voltage

measurements to determine the state-of-health of the two batteries. The state-of-health determines which

battery is on line (providing buffered power to the spacecraft bus during a sun-soak and full power while in

eclipse), and which battery is being charged.

The battery charge monitor (BCM) is an algorithm that controls the charge and discharge cycles

of both batteries. It controls and monitors the charge and discharge cycles using overcharge times, cell

temperature profiles, cell voltages and charge/discharge currents. Depending on the battery status, a Target

battery is selected to be charged. Also, once the satellite is launched into space, the power provided from

the solar panels must be distributed and regulated. While the satellite is in eclipse, power from the batteries

is necessary to keep PANSAT operational. The battery has to provide additional power during sunlight in

the event that the solar panel output is insufficient, such as during transmission. The Online battery

provides this power. Furthermore, the algorithm indicates the available power for operations, depending

on the charge state of the batteries: low, stand-by, or normal power operation modes. According to the

mode, certain subsystems will be turned off to guarantee operation.

The BCM also checks for corrupt data which is stored to review the charge state history of the

batteries. When such an error occurs, the algorithm will set the satellite to a default condition and restart

the battery charging based on measurements only, beginning new charge state history data. The algorithm

also detects either sunlight or eclipse. This is necessary to activate certain switch configurations to allow

continuous operation when the satellite is going through a transition from sunlight to eclipse or vice versa.

1. BCM Top Level
The BCM is essentially a large series of questions which are asked on a continual and frequent

basis. The questions consider recent measurements (temperature, current, and voltage) of the batteries, past

measurements, and whether or not the spacecraft is in eclipse. This series of questions determines how the

switches within the EPS are turned on and off in order to maintain correct and efficient use of the batteries.

67

These switches control which battery is on line, charging (trickle and normal), and discharging. A top-

down view of the algorithm is shown, starting with the main structure shown in Figure 22.

Battery Control Monitor

Capacity(A/B) = 0
Count(A/B) = UNKNOWN

ONLINE = NONE
Target = NONE

Mode = Low
Target_Time(A/B) = MAXJIME

Clear V(Max(Cells(A/B))).

Target_Time keeps track of
when a battery became a
target battery for the first

time (when the charge state
of the battery was

UNKNOWN). To indicate that
the battery has not yet been
charged, this value is set to
MAX_TIME (which is equal

to the maximum time able
to store in the variable /

minus the trickle charge /

V(Max(Cells(A/B))) are the
maximum values of each

cell in a battery as the
battery is being charged. As

a reset condition, it
assumed that the battery

could be less than full
charged, and therefore by
zeroing out the values of

the maximums, the
progresssion of the cells as

they exhibit higher
voltage is tracked for /

testing. /

Check Voltage
History on

Online Battery.

Determine
Battery to be

Online.

Determine
Battery to
Charge.

Determine
Battery Mode.

Check on
Charging
Battery.

Set Battery
Switches

!End.

Figure 22. Battery Control Algorithm Top Level.

68

A handful of variables describe the state of the BCM, such as Capacity, Count, Online, Target,

Mode, and cell voltage maximums. Capacity indicates how much charge is presently in a battery and is

expressed in AmpHours. The default Capacity for each battery is 0 AmpHours (empty). Count indicates

how many times a battery has been recharged as opposed to overcharge (discussed later). Initially, a value

of-2 (UNKNOWN) is assigned which means the battery needs immediate overcharging. Target indicates

which battery is currently being charged. To begin, the Target is None (neither battery since it must be

decided). Mode depends on the charge state of the batteries. Initially, Mode is Low (meaning satellite

operations should consume the least amount of power), and progresses to Standby, and Normal. Cell

Voltage maximums keep track of the highest voltage each cell in a battery reaches during a charge cycle

(while it is the Target).

Other useful parameters are depth of discharge (DOD), temperature references, an overcharge

voltage threshold, and timers. A previously charged battery which is online and losing charge capacity

reaches its depth of discharge (DOD) when it has 60% of its full capacity. This is a condition that should

trigger the battery to no longer be used for discharging and to begin a new charge cycle as soon as possible.

Temperature references note the temperature of batteries when a battery is first placed on line or started

charging. Such temperature references are used to monitor rapid temperature increases which can signify a

battery reaching overcharge; thus, this is a safety mechanism. An overcharge voltage threshold is a voltage

that is temperature dependent and indicates when a battery is approaching an overcharge condition. This

condition triggers the starting of timers which further monitor the amount of charge a target battery

receives before completing a charge cycle.

2. Battery Use Eligibility and Preference
As a necessary requirement for a battery to be eligible to be Online or the Target, the conditions of

the batteries are examined as shown in Figure 23. There are three topics of interest which can persuade

whether or not a battery is suitable for use. First, if a battery is already being charged (is the Target) and it

has a cell voltage below 0.9 V, then that battery should not be used. It should be considered defective.

Second (and this applies potentially to both batteries), if a battery is not currently being charged and has

already been charged then its cells must have a minimum cell voltage of 1.1 V. Otherwise, that battery

should not be used. It should be considered defective. If both batteries are still eligible for operation, then

the temperatures of the batteries are examined (Table 21); that is, both batteries are still eligible for use. If

the temperatures (an average temperature of all cells) of both batteries are between 0°C and 35°C, then

both batteries are eligible for use and there is no preference. Any preference given will be a function of the

charge state of the batteries (discussed later). However, if the temperatures are out of the range just

described, then one of the batteries will be preferred over the other.

69

My UM Target 0' any) » examinee
' only If it has been trh
■nd then momentarily

charged. This it checking for
operational voltage, while

charging that is above 0.9V/

For thia check (same for each
battery), a battery cannot be in the

process of charging; also, Ha
battery has no charge atata history

(UNKNOWN)thete*t
conducted.

These two tests here an to examines
battery which has been charged, but is
not being charged. The goal it to look
at the lowest of the max ™™ of the

caH voltages during tho chargkig of the
battery and make sura It sabovea

value of 1.1V. /

Check temperatures
for critical &

marginally critcal
conditions.

Preferred |
= A.

-1 !End . L_

Figure 23. Battery Preference.

70

Search begins by using lowest temperatures in this table and working towards higher temperatures.

Battery A

Battery B

<-10
<-10 <=0 <35 <=45 >45
Use Warmer A A A B

<=0 B Use Warmer A B B

<35 B B No Preference B B
<=45 B A A Use Cooler B
>45 A A A A Use Cooler

Table 21. Battery Preference Based On Temperatures.

3. Determine Online Battery
In order to determine which of the batteries should be online, many questions are answered

(Figure 24). First, a battery preference (as described above) is considered. If no such preference exists,

then the following is considered. If there is not already an online battery then the battery with the most

capacity (stored charge) is chosen. Otherwise, if a battery is already designated as online, it remains online

as long as its voltage has not dropped below a voltage threshold of 1.1 V and its capacity is above its DOD.

If the capacity of the online battery is below its DOD and if the other battery is not being charged, then the

other battery becomes the online battery allowing the depleted battery to begin a new charge cycle.

However, if the online battery must remain online because the other battery is being charged (disrupting

charge cycles is not preferred) then this condition is flagged and power consumption within the spacecraft

must be reduced.

71

Figure 24. Battery Online.

72

4. Determine Target Battery
During the next portion of questioning (Figure 25), if applicable, a battery is chosen to become the

Target and will begin being charged. Again battery preferences take precedence in the decision as to

which battery should be the Target. If no such preference exists, and there is not already a Target, then the

battery that is below its depth of discharge (DOD) is chosen. If both batteries are below their DODs, then

the battery that has the lowest capacity is chosen. Otherwise, if both batteries are charged above their

DOD, then no battery becomes the Target. The possibility of no battery being the Target at first seems

inappropriate. However, the batteries will have the longest life if they are only charged after sufficiently

being discharged, i.e. reaching an appropriate depth of discharge.

73

Figure 25. Determine Target Battery.

74

5. Charging Methods
Figure 26 shows the charging overview questions which occur prior to attempting to charge a

battery. First, the satellite must not be in eclipse in order to allow charging. Also, there must be a Target.

Finally, if charging is appropriate, one of two methods are used, depending on the charge state of the

Target battery. The two methods are overcharge and recharge.

Figure 26. Battery Charge.

a. Overcharge

A Target battery is charged using the overcharge method when its charge state is

unknown or it has already been recharged a maximum allowable number of times. The overcharge

method, shown in Figure 27, keeps the Target charged until a voltage threshold has been reached. This

voltage threshold depends on the temperature of the battery. Once this threshold has been reached, a timer

is set. Typical overcharging of a battery is based on a time which depends on the allowable power mode of

the spacecraft (Low, Standby, and Normal). By charging a set amount of time, a battery can be guaranteed

to reach beyond its 100% capacity (regarding the amount of charge placed into the battery); and thus, at the

completion of this overcharge the battery can be considered 100% full, containing 100% of its capacity.

75

Overcharge

Tref = Tref_DOD.

Target Is
overcharged

Stop charging the
Target.

Capacity/Target) =
100*

CountfTarget) = 0
Target - NONE.

Capacity (Target)

Over Capacity?

/^Övercha rge"\
Timer set (ON)?

",Courit(Target)"\^

UNKNOWN? -^

Y

^.^Time Eta psed >"\
TimerUmit(Mode) "^

Continue
overcharge or

Target.

Start Overcharge
Timer

Charge the Target.

Tref_Set =
TempfTarget).

-Hr

Cannot Contiunue
Overcharge due to
over integration.

Targets
overcharged

Stop charging the
Target.

Capac*y(Target)«
100%

CountfTarget) = 0
Target = NONE.

Cannot Continue
Overcharge due to

temperature extreme.

Target cannot finish
overcharged

CountfTarget)«
FORCE_OVERCHARGE.
Capacity remain« same.

Target = NONE

Figure 27. Battery Overcharge.

b. Recharge
A Target battery is charged using the recharge method when its charge state is known

and it has not been recharged a maximum allowable number of times. The recharge method, shown in

Figure 28, keeps the Target charged until its full capacity has been reached. This is performed using

current integration in order to monitor the amount of current that enters the battery.

76

Battery Recharge

Battery is recharged
Stop charging

Target.

Count (Target)++

Target = NONE.

Continue
charging Target.

-i End. l_

-""DOD Detect
= TRUE? ,

Tref = Tref =
Tref_DOD. Tref_Set.

Cannot Continue
Recharge due to

temperature extreme.

Target is not
recharged

Stop recharging
Target.

X
Count(Target)

remains the same
Target = NONE.

Figure 28. Battery Recharge.

6. Battery Mode
The operational mode of PANS AT depends on the charge state of the batteries which is

maintained by the BCM. The operational mode indicates how much known stored energy is in the

batteries at any time, and thus dictates how much power should be consumed by spacecraft operations.

Figure 29 shows the decisions made to determine the mode.

Determine Battery Mode

Figure 29. Battery Mode.

77

D. GROUND STATION COMMAND INTERFACE
After deployment, PANSAT only accepts requests received by RF transmissions. The ROM Boot

Loader understands a very limited set of commands. The goal of the Boot Loader is to load the secondary

loader while maintaining the spacecraft subsystems (in particular the batteries) in the most simple manner

possible. Commands are sent from the NPS ground station as packets of data which are requests to the

satellite to perform some action. The satellite responds to all commands with an acknowledgement packet

which may contain extra information depending on the command sent. Table 22 shows the commands

accepted during this initial stage of operation. The command encoding was designed so that each

command has 4 bit differences between any other command. Even though the packets are CRC encoded in

order to determine if there are bit errors, it is easy to also apply an encoding mechanism onto the

commands to provide further error prevention.

Command Encoding Description
Confirm 0x55 Confirm a control command.
Control 0x5A Request satellite to perform a particular operation.
Execute 0xA5 Transfer control to uploaded software (secondary loader).
Get Parameters OxAA Get parameters of A/D, BCM, hardware scenarios, RAM

wash, time.
Load 0x66 Load a block of data into a specific area of RAM.
Map 0x69 Send Address/Data Map for future Load commands.
Reset 0x96 Stop the System Controller, forcing alternate to Reset.
Set Parameters 0x99 Set parameters of A/D, BCM, hardware scenarios, RAM

wash, time.
Status 0x00 Send state-of-health (SOH) information.
Status Log Clear OxOF
Status Log Read OxFO Send recorded SOH.
Verify OxFF Verify a block of memory in RAM.
Unknown ? Command received but is corrupt.

Table 22. ROM Boot Loader Commands.

1. Command Packet Protocol
The data field within a command packet is limited to 262 bytes of data, regardless of the

command. This odd number was chosen to allow a paragraph aligned, 256 byte block of data to be sent

with the Load command to upload code and data images. The bytes in the data field are numbered 0

through 261. The data field format depends on the command.

Byte[0] Bytejll - Bytef261]
Command Data (relating to the command)

Table 23. Command Packet Data Field.

78

2. Commands

a. Confirm

The Confirm command is in response to the spacecraft receiving a command that

requires confirmation, in which the spacecraft then sends an acknowledgment that requires confirmation.

b. Control

The Control command contains another command within the request packet that specifies

some action the satellite should perform and return any data (or at least an acknowledge of having

completed the action) back to the ground station. Permissible commands are shown in Table 20.

c. Execute

The Execute command also contains an absolute memory address which is an instruction

pointer which contains the address of uploaded software in which transfer of control will be given. The

spacecraft will send an acknowledgement before it executes, requiring the confirm command to be sent

from the ground station.

d. Get Parameters

This command requests the spacecraft to send down all the parameters that describe and

regulate the activities of the autonomous control algorithms, e.g. RF, Modem configuration, A/D gather

and record rates, RAM wash rate, and Battery Control Monitor configuration.

e. Load

The Load command contains an address followed by a block of data. The address is the

beginning address where the data should be stored. Thus, the first data byte will be stored at the address,

the next data byte will be stored at the next larger address, etc. This command allows an arbitrary memory

image to be transferred from the NPS ground station to PANSAT. Normally, this command is used to

upload an image of the secondary loader which will take over the work of the Boot Loader.

The Load command uploads data pages which are up to 256 bytes in size. The absolute

address at which the data is to be loaded is given. Upon successfully receiving a page without errors and

storing the page into RAM without errors, the page address is recorded in a list. This list of successful

loads is used later when verify commands are given.

/ Map
The Map command is used prior to a sequence of Load commands in order to let the

spacecraft know about the number, location, and size of data blocks. All Map commands are

acknowledged by PANSAT immediately following successful reception. If a negative acknowledgement is

79

sent (or if no acknowledgement is sent), the Map command needs repeating. Multiple Map commands

may be necessary if a large number of Loads follow.

g. Reset

The Reset command forces the System Controller to enter a halt state. This will cause

the SC to fail to update the watchdog timer and thereby causing it to be powered down by the EPS. This

command causes the spacecraft to first send an acknowledgement of receiving the command; the confirm

command must then be sent to perform the reset.

h. Set Parameters

This command indicates to the spacecraft that there are new parameters to set within the

spacecraft which affect the activities of the autonomous control algorithms, e.g. RF, Modem configuration,

A/D gather and record rates, RAM wash rate, and Battery Control Monitor configuration. This command

causes the spacecraft to first send an acknowledgement of receiving the command; the confirm command

must then be sent to perform the parameter setting.

L Status

The Status command requests the satellite to send a complete state-of-health packet back

to NPS. This information contains sensor data acquired by the A/D acquisition system as well as various

software variables and parameters which describe the operational mode of PANS AT.

j. Status Log Clear

This command requests the spacecraft to clear all of the recorded status records on the

mass storage. This command causes the spacecraft to first send an acknowledgement of receiving the

command; the confirm command must then be sent to perform the clearing of records.

k. Status Log Read

This command tells the spacecraft to send down all of the recorded status records that

have been saved to the mass storage.

/. Verify

The Verify command is accompanied by an absolute memory address, which specifies a

block of data as used in the load command. Upon receipt of this command, PANS AT will check its list of

receive data blocks from earlier Map and Load commands. A response is returned, in the form of a data

block starting address, indicating which data blocks failed and need repeat transmission.

80

m. Unknown
In the event that the spacecraft actually receives an incoming packet in the form of a

command but is unable to make exact sense of the command, this response is sent back to the NPS ground

station, explaining that no action occurred.

3. Loading Sequence
The loading of blocks of data from the ground station to the spacecraft is a complex sequence of

operations, which is best viewed from a diagram. The sequence, Figure 30, is from the point of view of the

ground station, sending blocks of data to the spacecraft. To begin, maps are built that describe all of the

data blocks to be sent up; then the maps are sent using the Map command. Each Map command is

acknowledged by the spacecraft before the next one is sent. Next, the blocks are prepared and, using the

Load command, each block is sent up without any acknowledgement from the spacecraft. Finally,

verifications are prepared. For each Verify command sent, the spacecraft is to send down an immediate

response. The response may be in the form of multiple packets (if there were many Load errors).

Following this response from the spacecraft, for each Load error identified, the block is prepared and resent

to the spacecraft. The verification process is complete when the spacecraft returns a response indicating

that there are no known Load errors.

Upload Sequence (Ground station point of view).

Lo«J(»), >
Processing Lot

*t command;
E«idLo»d

"•fcommandJ

oadconvnarti

Figure 30. Block Loading Sequence.

81

E. SCENARIO CHECKS
On a regular basis during the execution of the Boot Loader, hardware and software sensors are

used to determine whether or not various hardware subsystems of PANSAT are functioning correctly.

Many of these checks are directly related to the communication systems. Since a lack of communication

from NPS most likely indicates that hardware on board the satellite is not functioning correctly or is not in

the mode presumed, symptoms that show this type of behavior are monitored. In the event that such a

symptom is found, the spacecraft either programs the hardware to another configuration or uses an entirely

different piece of hardware. Figure 31 shows a flow diagram indicating the various symptoms which are

monitored and the type of cure used.

Check Hardware Scenarios.

Deploy Antennas
ndicate Antennas

Deployed

Antenna
redeploy? Reset
SCC/Modem' ,

\MIXER=5. / \kllXER > 6. /
\IMA = 1 / \lNA = 2 I

\MIXER = S. / \MIXER»6, /
\LNA = 2 I X LNA = 1 /

I

>

Figure 31. Scenario Check.

82

VII. RESULTS, RECOMMENDATIONS, AND
CONCLUSION

A. RESULTS

1. Printed Circuit Board
The System Controller described in this thesis was fabricated on a printed circuit board. The

layout of the board was performed by David Rigmaiden of the Space Systems Academic Group with the

assistance of the author and the schematics generated with this document. Accel Technology's

P-CAD/Tango software was used as the layout tool. The result is a six layer board suitable for space flight.

Details of the layout and board manufacturing are beyond the scope of this document.

The printed circuit board was component stuffed by Rigmaiden and was tested by the author.

The testing involved the verification of each circuit element on the PCB. Appropriate voltage levels were

measured and were in accordance with expected values. Higher-level testing was accomplished by means

of software control and reading back of data if possible. Various voltage meters, oscilliscopes, and an in-

circuit emulator (ICE) connected to a general purpose computer were used to determine that the system

was operating properly.

2. Use of In-Circuit Emulator
The Microtek MICE-III ICE was used to emulate the M80C186XL during initial tests. The

microprocessor was removed from the printed circuit board, and the in-circuit emulator connected to the

CPU's socket. This setup is shown in Figure 32. The emulator provided a means to run a program in

emulation RAM and emulation ROM; later, the actual RAM and ROM were tested by placing these

components onto the actual printed circuit board. The emulator allows rapid modification of the test

programs without the requirement to re-program the system EPROM. The emulator also provides an

interface that allows single stepping through test programs at the machine level or at a higher level (e.g. C

program statements). Furthermore, sophisticated breakpoints based on hardware or software conditions are

programmable.

83

Figure 32. In-Circuit Emulator.

The emulator exhibited unusual behavior during testing with programmed ROMs. The emulator

was unable to drive the memory system with correct voltage levels; and thus, the ROMs on the printed

circuit board were not correctly stimulated and did not operate. This was of little consequence to

development however, since ROMs are needed only after significant testing and development has occurred.

This unusual behavior is attributed to the various families of interface logic that differ between the ICE and

the board.

3. Software
Device drivers were used to test the hardware peripherals of the System Controller as well as the

electronics of the satellite subsystems. Device drivers were tested first individually while observing that

the hardware was driven as desired. Next, device drivers were tested while operating together as multiple

interrrupt service routines while noting that the hardware was driven as desired. Higher-level software

routines were tested using the same methods as described for the device drivers. However, higher-level

software tests ran autonomously, logging data to a general purpose computer which could be examined

during and after the tests to ensure correctness of operation.

84

4. Testing
Tests were performed on the fabricated System Controller to evaluate the operation of the

hardware as well as verify the software that runs on the hardware. The results were all positive. Appendix

K. lists the tests performed during different stages of the System Controller construction.

B. RECOMMENDATIONS
The design of the System Controller glue-logic can be replaced with a programmable logic

device, such as a programmable gate array (PGA). This would reduce PCB area and power consumption.

The Space Systems Academic Group needs to investigate the acquisition of tools to simulate and test as

well as program such devices.

An additional design change would be to not only incorporate the glue logic, but also the EDAC

controller and memory buffers into the same PGA. This would further reduce power consumption and

PCB area. Such a controller could use additional M80C186 status bits (S2 - SO). These status bits, along

with the Bus High Enable and AO signals are available curing the first half of the first T state of the

microprocessor. These signals can identify if word write operations are about to occur in which the "read

and correct" can be eliminated and the associated error flags may also be eliminated. This would also

reduce power consumption since the RAM would be accessed less.

The peripheral control bus (PCB) of the spacecraft requires too much supervision by the CPU in

order to be effective for a data bus that requires higher data transfer rates. A simple controller could be

designed that accesses a small FIFO memory which stores subsystem address, sub-addresses, and data (for

a PCB write operation). The CPU could quickly add elements to the FIFO and let the controller

independently handle all of the PPI transactions. Another incoming FIFO would be used to store data read

from the PCB; it would be accessed by the CPU to gather incoming data.

C. CONCLUSION
The System Controller hardware and embedded software described in this thesis provide

PANSAT with a reliable digital computer suitable for use in the LEO environment. The system is capable

of autonomously controlling the spacecraft after launch and reset conditions. The system meets the design

requirements by using a small number of readily available, reasonably priced components.

85

86

APPENDIX A. HARDWARE SCHEMATICS

This appendix contains the detailed schematics for the System Controller hardware. The

following drawings are included:

on Drawing (Fjgure) "'■$
System Controller - CPU and Data/Address Buffers Figure 33
System Controller - Memory Figure 34
System Controller - AID and SCC Figure 35
System Controller - PCB, Power Detect, and Power Supply Figure 36

87

BE

C7B

Hh-
C71

Hh-
C72

Hh-
C73

Hh-
C74

Hh-
C75

HI—
C76

HI—
C77

Hh-

C88

HI—
C81

Hh-
C82

Hh-

C85

Hh-

C87

HI—
C88

C89

HI—
C98

HI—
C91

Hh-

C93

Hh-

C96

Hh-
C97

Hh-
C98

C1B1

-Hh-
C1B2

-HI—
C1B3

-Hh-
C1B4

—3h-
C1B5

C32

C33

C34

Hh-

C37

Hh-

C41

C42

Hh-
C43

C44

C46

Hh-
C47

Hh-

C58

Hh-

C52

Hh-
C53

Hh-

C55

Hh-
C56

C57

Hh-
C58

C59

Hh-

C63

Hh-

C65

Hh-

CB7

Hh-
C68

mssm

•asasaaii ta®Ml 0

mjsm mmm

•t$i,Umi i°

Slliiii

Figure 33. System Controller Schematic 1.

88

a Q

01

BQ aseg

i!

8888888SH6££5£55 JSj

fciaas 886888 jo Bffi ??????*?**??????

II *

sg^ünig

ggatasatääsäi fiäBaaSBj
4HHW

HUB

Figure 34. System Controller Schematic 2.

89

0 eBnan

I

FTFFrr

Z Z 2 X

lilt

Q=b??i!5

(Doovjcnui-^ojio-
II II II II II II II II II
^3073000000
~-H-Ht/>Z-H>>0

5czi Z5Q; IO

C22
.luF

.luF -+-

D5

.luF .luF

M

|5 JSS

:a «sä

1 f

Figure 35. System Controller Schematic 3.

90

Ja

i;
B

KuSSSSPBH

IsKlflfhlflit.!

asiz
■VW-:—°§
US

k
« .«ni)I.

L

Bll I I I I I

0

I I]

S83S

6013
—It—

«US

fpfffi MBMHlit
jii
"Fifkr Sftffü umlte

^«^TftO- 0^?????a»? Safes 5 5} ^ £ 3 SPaS ^

B ÜB i

Figure 36. System Controller Schematic 4.

91

92

APPENDIX B. SYSTEM CONTROLLER CONNECTOR
PIN-OUTS

This appendix contains the pin-outs for all of the connectors of a System Controller. The

connectors are the 9-pin analog input signals, the 9-pin RS-232 serial test port interface, the 25-pin

Peripheral Control Bus, and the 37-pin Modem interface.

Pin Number • Name B^criptiön]i
1 DO Data Bit 0
2 Dl Data Bit 1
3 D2 Data Bit 2
4 D3 Data Bit 3
5 D4 Data Bit 4
6 D5 Data Bit 5
7 D6 Data Bit 6
8 D7 Data Bit 7
9 SO System Select Bit 0
10 SI System Select Bit 1
11 S2 System Select Bit 2
12 GND Ground
13 SC_A System Controller Active
14 VCC PCB +5 V Power
15 SW +12 Switched+12 V Power
16 GND Ground
17 Unused Unused
18 RTSA
19 PCI
20 RF_EN RF Enable
21 RD PCB Read

22 WR PCB Write

23 Al Sub-address Bit 1
24 A0 Sub-address Bit 0
25 S3 System Select Bit 3

Table 24. Peripheral Control Bus Connector.

93

Pin Number 'Nape;.. Description
1 IOA6 Address Bit 6
2 IOA4 Address Bit 4
3 IOA2 Address Bit 2
4 PA100 PA 100 Chip Select

5 GND Ground
6 GND Ground
7 IOD7 Data Bit 7
8 IOD5 Data Bit 5
9 IOD3 Data Bit 3
10 IOD1 Data Bit 1
11 GND Ground
12 VCC Power To Buffers
13 GND Ground
14 IORD Read

15 MTXDATA Modem TX Data
16 MRXDATA Modem RX Data
17 +5V Switched +5 V
18 +5V Switched +5 V
19 MODEMJTEMP Modem Temperature
20 IOA5 Address Bit 5
21 IOA3 Address Bit 3
22 IOA1 Address Bit 1
23 LATCH Latch Chip Select
24 GND Ground
25 GND Ground
26 IOD6 Data Bit 6
27 IOD4 Data Bit 4
28 IOD2 Data Bit 2
29 IOD0 Data Bit 0
30 GND Ground
31 VCC Power To Buffers
32 GND Ground
33 IOWR Write
34 MTXCLK Modem TX Clock
35 MRXCLK Modem RX Clock
36 +5V Switched +5 V
37 +5V Switched +5 V

Table 25. Modem Connector.

94

jPin Nupiber Function
1 TMUXA+
2 TMUXA- (ground)
3 Ground
4 TMUXB+
5 TMUXB- (ground)
6 Ground
7 EPS+
8 EPS- (ground)
9 Ground

Table 26. Analog Signals Connector.

iPin Number • Name,;.;- Function Direction
1 CD Carrier Detect Out
2 Tx Transmit Data Out
3 Rx Receive Data In
4 DTR Data Terminal Ready In
5 GND Ground
6 DSR Data Set Ready Out
7 RTS Ready To Send In
8 CTS Clear To Send Out
9 RI Ring Indicator Out

Table 27. RS-232 Serial Port Connector.

95

96

APPENDIX C. CIRCUIT BOARD BILL OF MATERIALS

Type Pattern Value Des. Lgnators

CIO C100 C101

C102 C103

C104 C105

C106 C15 C18
C69 C70 C71

C72 C73 C74

C75 C76 C77

C78 C79 C80
C81 C82 C83
C84 C85 C86
C87 C88 C89
C90 C91 C92

C93 C94 C95
C96 C97 C98

C99

Cll

C107 C108

C109 C14 C17

C2 C21 C23

C26 C27 C28

C3 C32 C33
C34 C35 C36
C37 C38 C39
C4 C40 C41

C42 C43 C44

C45 C46 C47
C48 C49 C5

C50 C51 C52
C53 C54 C55
C56 C57 C58

C59 C6 C60
C61 C62 C63
C64 C65 C66
C67 C68 C7 C9

L3

J2

MJ

CAP0805 CAP0805 .OluF

330pF

CAP1206 CAP1206 .luF

CTX32 CTX32 33uH

DB25RM DB25RM HDC25M5000S-0

DB37F DB37F HDC37F32000S-0

DB9RF DB9RF HDC9F5000S-0 J31

97

DB9RM DB9RM HDC9M5000S-0 J18

54HC04
54HC08 DIP14 54AC08

54HC08

54HC125 DIP14 54HC125

54HC32 DIP14 54AC32
54HC32

54HC74 DIP14 54AC74

DG411 DIP16 DG411

54HC245 DIP20 54AC245
54HC245

54HC573 DIP2 0 54AC573
54HC573

54HC574 DIP20 54AC574

27C256-120 DIP28

1N751 DO-3 5 {Value}

LM50 LM50 LM50

80C186XL P186XL

ACS63 0MS P630

PCAP3528 PCAP3528 2.2uF

PCAP6032 PCAP6032 lOuF

PCAP7343 PCAP7343 lOOuF

CTX33-2 PCTXFORM 33uH

CTX50-2 PCTXFORM 50uH

AM85C30 PPLC44

IS82C55A PPLC44

LM12H458 PPLC44

MSM8256 PSRAM

U15
U25
Ul U12 Ü33
U18 U35

U2

U34 U4
U32 U3 7

U2 9

U27

U38 U3 9 U8
U10 U22 U23

U40 U41
U19 U20 U21
U7

U42

U36 Ü43

D3 D4 D5

U3

U5

U26

Cl C13

C110 C20 C22

C12 C16 C19
C8

L2

LI

U16

U14

Uli

U3 0 U31 U44

98

MAX744A PWS016 U13

MAX211E PWS028 U17

RES1206 RES1206 10K Rl R2 R3 R4
R5 R6 R7 R8

120 R22 R23 R24
R25

147K RIO

IK R15 R16 R17

IM R12

21. 5K Rll

511K R14

i
5K R13 R21 R9

MBRS140T3 SMB MBRS140T3 Dl

MBRS340T3 SMC MBRS340T3 D2

TPS2013 S08 TPS2013 U6

ICL8212 TO-99 ICL8212 U24

XTAL-OSC XTAL-OSC 14.7456MHz U9

99

100

APPENDIX D. PERIPHERAL CONTROL BUS
PROGRAMMABLE PERIPHERAL INTERFACE PORT

CONFIGURATION

This appendix contains a detailed description of the programmable peripheral interface (PPI -

8255) that is used to control the peripheral control bus of the spacecraft.

Bit Function
7 Read (active LOW)
6 Write (active LOW)
5 Sub-address 1
4 Sub-address 0
3 Select 3
2 Select 2
1 Select 1
0 Select 0

Table 28. Port B Assignments for PPI (Address and Read/Write Control).

S?pi$:Address ^,% PortName Usage
0x100 Port A Bi-directional using Port C for handshake.
0x102 PortB Address selection and Read & Write strobes.
0x104 PortC Handshaking for Port A, EDAC and Modem Control.
0x106 Control Control register for this PPI.

Table 29. PPI Port Usage.

Bit .3 Function
7 Handshake (unused)
6 Handshake
5 Handshake (unused)
4 Handshake
3 Handshake (unused)
2 EDAC Error Acknowledge (active LOW)
1 Read Latch Enable (active LOW)
0 Modem Power (active LOW)

Table 30. Port C Assignments for PPI (Handshaking and Control).

101

102

APPENDIX E. ELECTRICAL POWER SYSTEM PORT
CONFIGURATION

This appendix contains a detailed description of the Electrical Power System (EPS) ports.

Eprt Address Subaddress ■; Bit Contents
PortO 8 0 7 Battery A Charge (7 =enable)

6 Battery A Discharge (7 = enable)
5 Battery A Online (7 = enable)
4 Battery A Trickle Charge (7 = enable)
3 Mass Storage A Power (7 = enable)
2 Temperature MUX A Power (7 = enable)
1 unused
0 Battery A Heater (7 = enable)

Table 31. EPS PortO.

■ifort-m Address Subaddress Bit Contents
Port 1 8 1 7 Low Cell Voltage MUX Select 2

6 Low Cell Voltage MUX Select 1
5 Low Cell Voltage MUX Select 0
4 Low Cell Voltage Enable (7 = enable)
3 Medium Cell MUX Select 2
2 Medium Cell MUX Select 1
1 Medium Cell MUX Select 0
0 Medium Cell Voltage Enable (7 = enable)

Table 32. EPS Control Port 1.

iPorfv'' Address Subaddress Bit Contents
Port 1 8 2 7 unused

6 Battery B Heater (7 = enable)
5 RF Power (7 = enable)
4 Temperature MUX B Power (7 = enable)
3 Mass Storage B Power (7 = enable)
2 Antenna Release (7 = enable)
1 Solar Panel Current Inhibit (0 = inhibit, 1 = enable)
0 Solar Panel Current Strobe

Table 33. EPS Control Port 2.

103

Port Address Subaddress Bit Contents *';.
Port 3 8 3 7 Current Select, or High Cell Voltage Select 3

6 Current Select, or High Cell Voltage Select 2
5 Current Select, or High Cell Voltage Select 1
4 Current Select, or High Cell Voltage Select 0
3 High Cell Voltage MUX Select 2
2 High Cell Voltage MUX Select 1
1 High Cell Voltage MUX Select 0
0 High Cell Voltage Enable (7 = enable)

Table 34. EPS Control Port 2.

Port Address Sujfoddress Bit •Contents
Port 5 1 unused

unused
unused
unused
unused
unused
Battery A Current Sense (0 = discharging)
Battery B Current Sense (0 = discharging)

Table 35. Read-back Port 5.

Port ^Address* Sgfcaddfiss 'Bit'..'; Contents
Port 6 9 2 7 Battery B Charge (/ ^enable)

6 Battery B Discharge (7 = enable)
5 Battery B Online (7 = enable)
4 Battery B Trickle Charge (7 = enable)
3 unused
2 unused
1 unused
0 unused

Table 36. EPS Control Port 6.

Battery Cell MUX Select Control (Port 3)
0A 0000 1110 [OxOE]
1A 0000 1001 [0x09]
OB 0000 1101 [OxOD]
IB 0000 1011 [OxOB]

Table 37. EPS Low Cell Voltage Selections.

104

Battery Cell MUX Select Control (Port 3)
2A 1000 1111 [0x8F]
3A 1100 1111 [OxCF]
4A 1010 1111 [OxAF]
2B 1110 1111 [OxEF]
3B 10011111 [0x9F]
4B 11011111 [OxDF]

Table 38. EPS Medium Cell Voltage Selections.

iBatteryCeH;, MUX Select Control (Port 2)
5A 1010 0000 [OxAO]
6A 1110 0000 [OxEO]
7A 1001 0000 [0x90]
5B 11010000 [OxDO]
6B 10110000 [OxBO]
7B 11110000 [OxFO]
8A 1100 0011 [0xC3]
9A 1100 1011 [OxCB]
8B 1000 1111 [0x8F]
9B 1000 0111 [0x87]

Table 39. EPS High Cell Voltage Selections

Current Selection Label # MUX Sefect Control (Porti) Port 3
Solar Panel: 0000 0000 [00] 0000 1100 [OxOC]
Solar Panel: 0000 1000 [08] 0000 1100 [OxOC]
Solar Panel: 0000 0100 [04] 0000 1100 [OxOC]
Solar Panel: 0000 1100 [OxOC] 0000 1100 [OxOC]
Solar Panel: 0000 0010 [02] 0000 1100 [OxOC]
Solar Panel: 0000 1010 [OxOA] 0000 1100 [OxOC]
Solar Panel: 0000 0110 [06] 0000 1100 [OxOC]
Solar Panel: 0000 1110 [OxOE] 0000 1100 [OxOC]
Solar Panel Bus 0000 0101 [05] 0000 1010 [OxOA]
Battery A 0000 1001 [09] 0000 1010 [OxOA]
Battery B 0000 0001 [01] 0000 1010 [OxOA]

Table 40. EPS Current Selections.

105

106

APPENDIX F. A/D ACQUISITION

Period Cycle Set A/DINO A/DIN1 A/DIN2 A/DIN4 A/DIN6
(DCS) (Modem) (EPS) (TMUXA) (TMUXB)

0 0 0 DCS Modem SC Current 0 0
1 1 Battery A Cell 0 Voltage 1 1
2 2 Battery A Cell 1 Voltage 2 2
3 0 1 Battery A Current 3 3
4 1 Battery A Cell 2 Voltage 4 4
5 2 Battery A Cell 3 Voltage 5 5
6 0 2 Battery B Current 6 6
7 1 Battery A Cell 4 Voltage 7 7
8 2 Battery A Cell 5 Voltage 8 8
9 0 3 SC Current 9 9

10 1 Battery A Cell 6 Voltage 10 10
11 2 Battery A Cell 7 Voltage 11 11
12 0 4 Battery A Current 12 12
13 1 Battery A Cell 8 Voltage 13 13
14 2 Battery B Cell 0 Voltage 14 14
15 0 5 Battery B Current 15 15
16 1 Battery B Cell 1 Voltage 16 16
17 2 Battery B Cell 2 Voltage 17 17
18 0 6 SC Current 18 18
19 1 Battery B Cell 3 Voltage 19 19
20 2 Battery B Cell 4 Voltage 20 20
21 0 7 Battery A Current 21 21
22 1 Battery B Cell 5 Voltage 22 22
23 2 Battery B Cell 6 Voltage 23 23
24 0 8 Battery B Current 24 24
25 1 Battery B Cell 7 Voltage 25 25
26 2 Battery B Cell 8 Voltage 26 26
27 0 9 SC Current 27 27
28 1 Spacecraft Bus Voltage 28 28
29 2 Solar Panel 0 Current 29 29
30 0 10 Battery A Current 30 30
31 1 Solar Panel 1 Current 31 31
32 2 Solar Panel 2 Current
33 0 11 Battery B Current
34 1 Solar Panel 3 Current
35 2 Solar Panel 4 Current
36 0 12 SC Current
37 1 Solar Panel 5 Current
38 2 Solar Panel 6 Current
39 0 13 Battery A Current
40 1 Battery B Current
41 2 Solar Panel 7 Current

Table 41. A/D Conversion Schedule.

107

108

APPENDIX G. THERMISTOR TEMPERATURE
CONVERSIONS

To simplify temperature conversions for the Omega 440048 thermistors, a table is used to perform

a binary search where a maximum of seven compares are needed for a lookup. The table is used by taking

the value from the A/D converter and finding the closest match in the table. The position of the match in

the table indicates the temperature of the sensor. The following discussion describes how the conversion

process works.

T =
A + B*ln(R)+C*[\n(R)]

-273.15
(10)

The equation shown above uses three coefficients which were calculated using the temperature

range suggestions from the Omege Temperature Sensor manual [Ref. X]. A short MATLAB program

(given below) was created to determine these coefficients based on the assumption that the most accurate

temperature conversions are needed in the temperature ranges between 0°C to 30°C. The ability to change

the coefficients means that the conversion formula can be tailored to have the best conversion for a certain

temperature range. In doing so, three temperatures must be selected when using the program. One

temperature must be below the range, another within the range, and the third above the range.

Furthermore, there can be no more than 100°C between the two extremes, and each successive temperature

can be no more than 60°C apart. The temperatures used are -30°C, 20°C, and 60°C. The corresponding

resistances based on the generic lookup conversion provided by Omega are 481 kQ, 37.3 kQ, and

7.599 kQ . The values for the coefficients are A=9.306xl0'4, B= 2.218X10"4, and C=1.253xl0"7.

Tl = -30 + 273.15;
T2 = 20 + 273.15;
T3 = GO + 273.15;
T = [1/T1; 1/T2; 1/T3];

Rl = 481. 0E3;
R2 = 37.3E3;
R3 = 7599;
R = tl 1 1; log(Rl) log(R2) log(R3); (log(Rl))Ä3 (log(R2))*3

dog(R3))"3] ';

S = inv(R)*T;
S

109

One channel of each temperature multiplexing unit is reserved as a fixed 1% precision resistor is

used as a calibration resistor to create a calibration current. The calibration current, Ic, is converted as

follows.

/ - Ü if —

N'
4095

= 0.001221*
N

Re KRc.
where Rc is the resistance of a (fixed 1%)

Calibration Resistor equal to xxx Q.

Thus, a particular thermistor resistance, R, is converted as follows.

(11)

R = -£-
k

N>
4095

= 0.001221*
k)

(12)

For quick temperature conversions, a table lookup is used where the value N is an index into the

table. This table is shown in Table 42. Assuming a constant calibration current, the table can remain

static. If the calibration current changes significantly, the table can be recalculated simply by multiplying

all of the entries by the change in the calibration current.

N R*Ir

4095

%\9*R*lr (13)

Because of the resolution of the A/D converter, temperatures above 88°C do not have unique

conversions from the A/D. Since 5 mV of noise are allowed within the system, temperatures above 44° C

are not accurate to within one degree Celsius. Finally, a saturated reading from the A/D, i.e. N = 4095,

corresponds to any low temperature below -30° C. Note, 4191 is above the limit of the A/D, yet

corresponds to the next integral temperature below -30° C.

110

T(Q A/D(N) T(C) A/D(N) : T(C) |A/D(N)

-30.0 3949 10.0 482 50.0 90
-29.0 3723 11.0 461 51.0 87
-28.0 3512 12.0 440 52.0 84
-27.0 3313 13.0 420 53.0 81
-26.0 3127 14.0 401 54.0 78
-25.0 2952 15.0 383 55.0 75
-24.0 2788 16.0 366 56.0 72
-23.0 2634 17.0 350 57.0 70
-22.0 2490 18.0 335 58.0 67
-21.0 2354 19.0 320 59.0 65
-20.0 2226 20.0 306 60.0 62
-19.0 2106 21.0 293 61.0 60
-18.0 1993 22.0 281 62.0 58
-17.0 1887 23.0 • 269 63.0 56
-16.0 1787 24.0 257 64.0 54
-15.0 1693 25.0 246 65.0 52
-14.0 1604 26.0 236 66.0 51
-13.0 1520 27.0 226 67.0 49
-12.0 1442 28.0 217 68.0 47
-11.0 1368 29.0 208 69.0 46
-10.0 1298 30.0 199 70.0 44
-9.0 1231 31.0 191 71.0 43
-8.0 1169 32.0 183 72.0 41
-7.0 1110 33.0 176 73.0 40
-6.0 1055 34.0 169 74.0 38
-5.0 1002 35.0 162 75.0 37
-4.0 953 . 36.0 156 76.0 36
-3.0 906 37.0 150 77.0 35
-2.0 862 38.0 144 78.0 34
-1.0 820 39.0 138 79.0 33
0.0 780 40.0 133 80.0 32
1.0 743 41.0 127 81.0 31
2.0 707 42.0 123 82.0 30
3.0 673 43.0 118 83.0 29
4.0 642 44.0 113 84.0 28
5.0 611 45.0 109 85.0 27
6.0 583 46.0 105 86.0 26
7.0 556 47.0 101 87.0 25
8.0 530 48.0 97 88.0 24
9.0 506 49.0 94

Table 42. Thermistor Lookup Conversion Table.

Ill

112

APPENDIX H. SPACECRAFT COMMAND ENCODING

This appendix gives the command encoding details.

Byte[0] Byte[l| -ByteHl
0x05 Address

Table 43. Execute Command.

Byte(0| Byte[l| -Byte|4| Byte|5| ByteI6]-Bytej261]
OxOA Address Count

(0=>
256)

Code/data

Table 44. Load Command.

Byte[0p ByteU] -
Byte[4|

Byte 151 Bytel6] -
Bytepl

Byte [10J •• ^BytetZSej'f-'u:
ByteI259|

Byte [260]

0x5A Address Size
(0=>256)

Address Size
(0=>256)

Address Size
(0=>256)

Table 45. Map Command.

ByteJOl »yte[ll-Byte[31
OxFF OxAA, 0x55, OxFF

Table 4 6. Reset Command.

ByMOI
0x00

Table 47. Status Command.

BytelOl
OxAA

Table 48. Verify Load Command.

113

114

APPENDIX I. SOFTWARE GENERATION FACILITIES

This appendix contains the software generation facilities for the ROM Boot Loader embedded

software for the System Controller.

A PC compatible workstation using standard software generation tools creates the PANSAT Boot

ROM software. The Microsoft C Compiler version 5.0 and the Microsoft Macro Assembler version 5.10

translate the software source code into object modules. The Make facility included with these code

generators provides an automated method for generating the ROM image. Systems And Software, Xlink86

version 6.10e links all of the object modules into a relocatable code image. Systems And Software Xloc86

version 6.10 translates the relocatable image into absolute address code and data. Finally, Systems And

Software PROM86 version 6.0a prepares a binary image suitable for the ROM. The makefile, named

dcs.mak and shown below, is responsible for identifying all the source modules and their dependencies

which are required to build the entire ROM image for the embedded software.

DCS.MAK

Date Who What
+ +
25 March 1996 Jah Creation

Compiler and Assembler options

ffMAKEUlK = .

Compiler options: /c no linking
/AS small model (64k code, 64k data)
/Zp pack structures on n boundary
/Gs no stack checking
/Od no optimizations
/Oi enable intrinsic functions
/FPa FP calls with altmath library
/Gl use 80186 instructions

115

/Zi add symbolic debugging information

CFLAGS = /c /AS /Zpl /Gs /Od /Oi /FPa /Gl /Zi

Assembler options:/Mx case-sensitive identifiers
/Zi add symbolic debugging information

AFLAGS = /Mx/Zi

General (common) dependencies

GENDEPS = gendefs.h genapis.h

OBJS = dcs.obj ad.obj bcm.obj clock.obj edac.obj eps.obj genapis.obj modem.obj msu.obj\
pcb.obj printobj scc.obj stpi.obj terms.obj tlm.obj startup.obj

Compilations

Mmmmmm#mmMMmmmMmmm###m##m###m###m#######mmmmmm##m#

dcs.omf: dcs.abs
cv2omf dcs.abs to dcs.cv
prom86 dcs.cv to dcs.omf omf initdata

prom86 dcs.abs to dcs.bin ad(0F0000h, OFFFFFh) initdata one

Absolute address relocated image
dcs.abs: dcs.lnk

xloc86 @dcs.loc

Linked image
dcs.lnk: $(OBJS)

xlink86 @dcs.lk

source code modules
dcs.obj: dcs.c dcs.h pcb.h $(GEN_DEPS)

ad.obj: ad.c ad.h pcb.h tlm.h $(GEN_DEPS)

bcm.obj: bcm.c bcm.h ad.h clock.h pcb.h tlm.h $(GEN_DEPS)

clock.obj: clock.c edac.h $(GEN_DEPS)

edac.obj: edac.c edach $(GEN_DEPS)

eps.obj: eps.c eps.h pcb.h $(GEN_DEPS)

genapis.obj: genapis.c genapis.h $(GEN_DEPS)

#int.obj: intx int.h $(GEN_DEPS)

116

modem.obj: modem.c modem.h $(GEN_DEPS)

msu.obj: msu.c msu.h pcb.h $(GEN_DEPS)

pcb.obj: pcb.c pcb.h $(GEN_DEPS)

print.obj: print.c printh $(GEN_DEPS)

#rf.obj: rf.c rf.h pcb.h $(GEN_DEPS)

scc.obj: scc.c scc.h $(GEN_DEPS)

#scenario.obj: scenario.c scenario.h $(GEN_DEPS)

#spacket.obj: spacketx spacket.h scc.h $(GEN_DEPS)

stpi.obj: stpi.c stpi.h print.h tlm.h $(GEN_DEPS)

terms.obj: terms.c terms.h $(GEN_DEPS)

tlm.obj: tlm.c tlm.h ad.h bcm.h pcb.h $(GEN_DEPS)

startup.obj: startup.asm

117

All of the modules are linked together by XLINK86 which uses a file named dcs.lk (shown below) to

identify each module.

startup.obj, dcs.obj, ad.obj, bcm.obj, clock.obj, edac.obj, eps.obj, genapis.obj, modem.obj, msu.obj,
pcb.obj, printobj, scc.obj, stpi.obj, terms.obj, tlm.obj, &
slibca.ssi&
to dcs.lnk

Finally, the linked ROM image needs to have all address relocated to absolute addresses

corresponding to the location of the ROM in the embedded system. This process is called loading, and is

performed by the program XLOC86 which uses the file dcs.loc (shown below) to describe the relocation

needed.

dcs.lnk to dcs.abs &
NOINITCODE &
ORDER(CS(&

FARDATAJBEG, FAR_DATA, FAR_DATA_END,&
FARBSSJBEG, FAR_BSS, FAR_BSS_END,&
HUGE_BSS_BEG, HUGE_BSS, HUGE_BSS_END,&
DATABEG, DATA, CONST, MSG, DATAEND, &
BSS, BSS_END,&
STACK,&
CODE, CODE_END,&
BOOTSTRAP))&

ADDRESSES(CS(FAR_DATA_BEG(0400H),CODE(0F0000h)))

118

APPENDIX J. SOFTWARE SOURCE CODE

This appendix contains the software source code for the ROM Boot Loader software for the System

Controller. The following source code files are included:

Module (filename) Description Page(s)
ad.h, ad.c A/D converter ISR and support routines. 120 - 129
bcm.h, bcm.c Battery control monitor. 130-146
clock.h, clock.c Clock. 147 - 148
cmd.h, cmd.c Command interpreter. 149-151
dcs.h, dcs.c main() and master loop for ROM boot loader. 152-155
edach, edac.c EDAC ISR and RAM wash. 156-158
eps.h, eps.c EPS support routines 159 - 164
genapis.ch genapis.c General (common) subroutines used by other modules. 165 - 167
gendefs.h General #defines, typedefs, and macros. 168-169
int.h, int.c CPU interrupt control and support. 170 - 170
modem.h, modem.c Modem (PA-100) support routines. 171 - 176
msu.h, msu.c Mass storage support routines. 177-192
pcb.h, pcb.c PCB support routines. 193 - 197
printh, printx Display support for STPI: printf()-like facilities. 198 - 204
rf.h, rf.c RF support routines. 205 - 207
scc.h, scc.c SCC support routines. 208-217
scenario.h, scenario.c Scenario (alternate hw/sf) support routines. 218-218
spacket.h, spacket.c Synchrounous packet protocol support routines. 219-219
startup.asm Startup (80186 assembler) module. 220 - 240
stpi.h, stpi.c Spacecraft test port interface (RS-232) support routines. 241-273
terms.h, terms.c Terminal emulation support for STPI. 274 - 276
tlm.h, tlm.c Telemetry management support routines. 277 - 283

119

ad.h ad.c

*
* AD.H

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================

* Date Who What
* + +

* 15 April 1996 Jah Creation
* 25 Feb 1997 Jah ROM version: reflects EPS port changes
*

/* Approximate time for a A/D Set to be aquired. This is the approximate
* difference in time between successive current readings to the batteries.
*/

«define AD_DELTA_T 1

#define AD_RES ((double)(5.0/4095.0))

«ifdef AD
«define AD_BASE 0x80
«define AD_INSTR0 AD_BASE
«define AD_INSTR1 AD_BASE + 2
«define AD_INSTR2 AD_BASE + 4
«define AD_INSTR3 AD_BASE + 6
«define AD_INSTR4 AD_BASE + 8
«define AD_INSTR5 AD_BASE + OxOA
«define AD_INSTR6 ADJBASE + OxOC
«define AD_INSTR7 AD_BASE + OxOE
«define AD_CONFIG AD_BASE + 0x10
«define AD_IER AD_BASE + 0X12
«define AD_ISR AD_BASE + 0x14
«define AD_TIMER AD_BASE + 0x16
«define AD_FIFO AD_BASE + 0x18
«define AD_LIMIT AD_BASE + OxlA

/* Masks */
«define RAM00 0x0000
«define RAM01 0x0100
«define RAM02 0x0200

/* Define the A/D schedule for readings.
* The schedule is organized into periods. For startup, there are
* 54 periods, number 0-53. Each period uses between one and 5
* inputs on the A/D. A/D IN0 is the DCS temperature sensor,
* A/D INI is the Modem temperature sensor, A/D IN2 is the EPS,
* A/D IN4 is the TMUXA, and A/D IN6 is the TMUXB.
*
* Since the EPS contains the current sensors for the batteries and
* the spacecraft bus (total solar panel current input), and these
* signals must be read frequently for accurate current integration
* and quick eclipse sensing, the schedule repeats these readings,
* interleaving them with other readings. Each interleaving set
* is called a Set, numbered from 0 to 13. There are normally
* three (3) cycles per set.
*/

«define NUM_INPUTS 5
«define NUM_PERIODS 42
«define NUM_STEPS 14

«define NÜM_INSTRS 5 /* Maximum Sequencer instructions */

«define NO_PCB ((unsigned char) OxFF) /* indicates no PCB required for
* reading; but a reading is needed.
*/

«define NO_READ ((unsigned char) OxFE) /* perform no reading on the A/D
* channel for a given period.
*/

/* EPS Setup requires potentially more than one Port 1/2/3 writing

120

*/

depending on the sensor. This table is per period and shows
for a given period, which port(s) need written to. Also, this
table indicates if the Current Inhibit Switch needs to be
disabled, i.e. current reading will be made.

#define NOT_USED ((unsigned char)OxFF) /* indicates port is not used */

#define NO_CUR
#define CURRENT
#define CUR DIR

((unsigned char)0x00)
((unsigned char)0x01)
((unsigned char)0x02)

/* not a current measurement */
/* current: solar bus, solar panels */
/* current w/ directiont */

#define N0_INSTR ((unsigned int)OxFFFP) /* instruction not used */

/* This structure describes to the ad_collect() function how to save A/D
* samples into the correct categories and positions within those categories
*/

typedef struct ad_collect_params

{
unsigned char
unsigned char

type;
position;

ad_collect_params_struct;

/* Sensor types, used by ad_collect() and ad_collect_params () */
#define
#define
#define
#define
#define
#define
#define
#define
#define

THERMISTOR
TEMP_SENSOR
V_BATTA
V_BATTB
V_BUS
I_BATTA
I_BATTB
I_BUS
I SOLAR

((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned
((unsigned

char)0)
char)l)
char)2)
char)3)
char)4)
char)5)
char)6)
char)7)
char)8)

/* AD Error Flags */
#define AD_WAIT 5000
#define AD_NO_ERROR 0
#define AD_RESET_ERROR 1
#define AD_FIFO_COUNT_ERROR 2
#define AD CALIB WAIT ERROR 3

void ad_collect(void);
void ad_init(void);
void interrupt far ad_isr();

Sendif

#ifndef AD
extern
extern

int
int

samples_ready;
ad_flag;

extern void ad_collect (void) ,
extern void ad_init(void);
extern void interrupt far ad_isr();

#endif

121

/***
*
* AD.C
*
* Petite Amateur Navy Satellite (PANSAT) .
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)

* Revision History:

Who What

* 24 April 1996 Jah Creation

* 25 Feb 1997 Jah ROM version includes new EPS port assignments.
*
**

#include "gen_defs.h"

tdefine AD
#include "ad.h"
#undef AD

tinclude "bcm.h"
ftinclude "clock.h"
tinclude "eps.h"
#include "pcb.h"
#include "tlm.h"

static WORD period = 0;
static WORD ad values[N
static int negative cu negative_current[NUM_PERIODS] ;

int samples_ready = FALSE;

int ad_flag = AD_NO_ERROR;

/* Schedule of PCB Commands for EPS reading */
static const BYTE ad_sch_eps[NUM_PERIODS] [3] =

/* Current?
/* Set 0 */
{CURRENT,
{NO_CUR,
{NO_CUR,

/* Set 1 */
{CUR_DIR,
{NO_CUR,
{NO_CDR,

/* Set 2 */
{CUR_DIR,
{NO_CUR,
{NO_CUR,

/* Set 3 */
{CURRENT,
{NO_CUR,
{NO_CDR,

/* (Set 4) •/
{CUR_DIR,
{NO_CUR,
{NO_CUR,

/* (Set 5) •/
{CUR_DIR,
{NO_CÜR,
{NO_COR,

/* Set 6 */
{CURRENT,
{NO_CUR,
{NO_CUR,

/* Set 7 */
{CUR_DIR,
{NO_CUR,

Port 3

(BYTE)0x80,
N0T_USED,
NOT USED,

(BYTE)0x90,
N0T_USED,
NOT USED,

(BYTE)OxAO,
NOT_USED,
(BYTE)0x01,

(BYTE)0x80,
(BYTEIOX03,
(BYTE)0x05,

(BYTE)0x90,
(BYTEI0x07,
N3T USED,

(BYTE)OxAO,
NOT_USED,
NOT USED,

(BYTE)0x80,
NOTJJSED,
NOT USED,

(BYTE)0x90,
(BYTE)0x09,

Port 1 */

(BYTE)0x30), /* ISC */
(BYTE)0x70), /* A0 */
(BYTE)0x90), /* Al */

(BYTE)0x30), /* IA */
(BYTE)OxFl}, /* A2 */
(BYTE)0xF3}, /* A3 */

(BYTE)0x30), /* IB */
(BYTE)0xF5), /* A4 */
(BYTE)0x10}, /* A5 */

(BYTE)0x30}, /* ISC
(BYTE)0x10}, /* A6 */
(BYTE)0x10}, /* A7 */

(BYTE)0x30), /* IA
(BYTE)0x10}, /* A8 */
(BYTE)OxBO}, /* B0 */

(BYTE)0x30), /* IB
(BYTE)OxDO), /* Bl */
(BYTE)0xF7), /* B2 */

(BYTE)0x30), /* ISC */
(BYTE)0xF9), /* B3 */
(BYTE)OxFB), /* B4 */

(BYTE)0x30), /* IA */
(BYTE)0x10}, /* BS */

122

{NO_CUR, (BYTE)OxOB, (BYTE)0x10}, /* B6 */

/* Set 8 */
{CUR_DIR,
{NO_CUR,
{NO_CUR,

(BYTE)OxAO,
(BYTE)OxOD,
(BYTE)OxOF,

(BYTE)0x30}, /* IB */
(BYTE)0x10}, /* B7 */
(BYTE)0x10}, /* B8 */

/* Set 9 */
{CURRENT,
{NO_CUR,

{CURRENT,

(BYTE)0x80,
NOT USED,

(BYTE)0x00,

(BYTE)0x30}, /* ISC */
(BYTE)OxFD), /* VSC */

(BYTE)0x50}, /* SP0 */

/* Set 10 */
{CURJDIR,
{CURRENT,
{CURRENT,

(BYTE)0x90,
(BYTE)0x10,
(BYTE)0x20,

(BYTE)0x30), /* IA */
(BYTE)0x50), /* SP1 */
(BYTE)0x50}, /* SP2 */

/* Set 11 */
{CUR_DIR,
{CURRENT,
{CURRENT,

(BYTE)OxAO,
(BYTE)0x30,
(BYTE)0x4 0,

(BYTE)0x30}, /* IB */
(BYTE)0x50}, /* SP3 */
(BYTE)0x50}, /* SP4 */

/* Set 12 */
{CURRENT,
{CURRENT,
{CURRENT,

(BYTE)0x8 0,
(BYTE)0x50,
(BYTE)0x60,

(BYTE)0x30}, /* ISC */
(BYTE)0x50}, /* SPS */
(BYTE)0x50}, /* SP6 */

{CUR_DIR,
{CUR_DIR,
{CURRENT,

};

(BYTE)0x90,
(BYTE)OxAO,
(BYTE)0x70,

(BYTE)0x30}, /* IA */
(BYTE)0x30}, /* IB */
(BYTE)0x50}, /* SP7 */

/* Describe how to take the raw samples and organize them by types into
* the correct sensor type arrays. This is for the EPS readings only.
* The other channels are easy to categorize based on the period number
* (e.g. periods 0-31 have TMUX readings, period 0 has DCS & Modem
* temperature readings).
*/

static const ad collect_params struct ad collect table[NUM PERIODS] =
;

/* Period 0,
{I_BUS, 0},
{V_BATTA, 0}
{V_BATTA, 1}

Set 0 V

/* Period 3,
{I_BATTA, 0}
{V_BATTA, 2}
{V_BATTA, 3}

Set 1*/

/* Period 6,
{I_BATTB, 0}
{V_BATTA, 4}
{V_BATTA, 5}

Set 2 */

/* Period 9,
{l_BUS, l},
{ V_BATTA, 6}
{V_BATTA, 7}

Set 3 */

/* Period 12
{I_BATTA, 1}
{V_BATTA, 8}
{VJBATTB, 0}

Set 4 */

/* Period 15
{I_BATTB, 1}
{VJ3ATTB, 1}
{V_BATTB, 2}

Set 5 */

'

/* Period 18
{I_BUS, 2},
{V_BATTB, 3}
{V_BATTB, 4)

Set 6 */

/* Period 21
{l_BATTA, 2}
{V_BATTB, 5}
{V_BATTB, 6}

Set 7 */

/* Period 24
{I_BATTB, 2}

Set 8 */

123

};

V_BATTB, 7},
V_BATTB, 8},

* Period 27, Set 9 »/
I_BUS, 3),
V_BUS, 0} ,
I_SOLAR, 0),

* Period 30, Set 10 */
I_BATTA, 3} ,
I_SOLAR, 1),
I_SOLAR, 2},

* Period 33, Set 11 */
I_BATTB, 3),
I_SOLAR, 3),
I_SOLAR, 4),

* Period 36, Set 12 */
I_BUS, 4},
I_SOLAR, 5},
I_SOLAR, 6},

/* Period 39, Set 13 */
I_BATTA, 4},
I_BATTB, 4),
I_SOLAR, 7},

*
* voidad_init 0
*
* Initialize the A/D. Recalibrate. Setup first (period=0) program.
* Set Sequencer Timer (delay before acquisitoin) to 10 msec.
*

voidad_init(void)

{
int i ;
int x;
WORD temp;

/* Turn on the TMUXes to allow temperature sensing */
eps_set_power (PWR_TMUXA, ON) ;
pcb_write(TMUXA, 0, 0x10); /* select channel 0 (calibration resistor) */
eps_set_power (PWR_TMUXB, ON);
pcb_write(TMUXB, 0, 0x10); /* select channel 0 (calibration resistor) */

/* Zero out values because no A/D has yet occurred (or forcing reset) */
for (i = 0; i < NUM_PERIODS; i++)
{

negative_current[i] = 0;
ad_values[i][0] = 0;
ad_values[i][1] = 0;

)

period =0; /* index into ad_sch[] [] */

/* Setup MUXes A/B for first temperature sensors (Calibration resistors) */
pcbw_m(TMUXA0, 0, 0x10)
pcbw_m(TMDXB0, 0, 0x10)

/* Setup EPS for first reading */
pcbw_m(EPS0, 3, (ad_sch_eps[0] [1])) /* EPS Port 3 */
pcbw_m(EPS0, 1, (ad_sch_eps [0] [2])) /* EPS Port 1 */

eps_set_port2 (eps_get_port2 ()) ,-

outpw(AD_CONPIG, 0x0002); /* Reset the A/D */
/* Wait for RESET bit to clear */
for (x = 0; (x < AD_WAIT) && (inpw (AD_CONFIG) & 0x0002) ; X++)

if (x == AD_WAIT)

{
ad_flag = AD_RESET_ERROR ;
return;

}

124

outpw (AD_CONFIG, 0x0008); /* Full Calibration */
/* Wait for CALIBRATION bit to clear */
for (x = 0; (x < AD_WAIT) && (inpw(AD_C0NFIG) & 0x0008); X++)

if (x == AD_WAIT)

{
ad_flag = AD_CALIB_WAIT_ERROR;
return;

}

outpw(AD_CONFIG, 0x0000); /* stop the sequencer and point to RAM 00 ♦/

/* Program A/D Sequencer
OUtpw (AD_INSTR0, 0XF208)
OUtpw (AD_INSTR1, 0XF208)
outpw(AD_INSTR2, 0xF210)
outpw(AD_INSTR3, 0XF218)
OUtpw(AD_INSTR4, 0XF2 00)
outpw (AD_INSTRS, 0XF204)
outpw(AD_INSTR6, 0XF202)

based on schedule for period 0 */
/* EPS */
/* EPS */
/* TMUX A */
/* TMUX B */
/* DCS */
/* Modem */
/* Pause */

/* Setup A/D Timer */
outpw (AD_TIMER, 2000);

outpw(AD_CONFIG, 0x0002); /» Reset the A/D */
/* Wait for RESET bit to clear */
for (x = 0; (x c AD_WAIT) SeSc (inpw (AD_CONFIG) & 0x0002); X++)

if (x == AD_WAIT)

{
ad_flag = AD_RESET_ERROR;
return;

/* Force A/D to interrupt when 6 readings in the FIFO occur */
outpw(AD_IER, 0x3004);

/* Clear any interrupts of the A/D by reading the status register */
inpw(AD_ISR) ;

/* Allow IRQs from A/D LM12H458 to the CPU */
ttdefine I1CON 0xFF3A
outpwfllCON, 0x0005); /* Edge-trig., ON, priority 5 */

/* Start the A/D Sequencer. Interrupt will occur eventually */
outpw(AD_CONFIG, 0x0001); /* start sequencer */

while (samples_ready == FALSE) /* wait for end of first A/D sweep */

} /* End of ad_init() */

/»•»•HMj.ntit.tum.mH.tttu...*«.,),!,»,,»,,,,,,,,,,,,,,,,,,,,,,,,,,,

* void interrupt far ad_isr()
*

void interrupt far ad_isr()

{
register int p;
register int x;
BYTE temp;

static int c = 6; /* first A/D period has six samples to read */

outpw(AD_CONFIG, 0x0000); /* Stop sequencer, point to RAM 00 */
inpw (AD_ISR) ; /* this clears the interrupt */

p = period; /* get a register copy of the current period */

/*****************++****/

/* Collect A/D samples */
/***********************/

/* Wait for all the samples in the FIFO */
for (x = 0; (x < AD_WAIT) £.& (((inpw(AD_ISR) & 0xF800) » 11) < c) ; x++)

if (x == AD_WAIT)

125

{
ad_flag = AD_FIFO_COUNT_ERROR;
/* Send non-specific EOI to Interrupt Controller */
outpw(0xFF22, 0x8000);

return;

}

if (p == 0) /* 0th period has all six A/D samples */

{
inpw(AD_FIFO); /* discard - double EPS reading */
ad_values[0] [0] = inpw(AD_FIF0) & OxOFFF
ad_values[0] [1] = inpw(AD_FIFO) t OxOFFF
ad_values[0] [2] = inpw(AD_FIFO) & OxOFFF
ad_values[0][3] = inpw(AD_FIFO) & OxOFFF
ad values[0) [4] = inpw(AD_FIFO) & OxOFFF

/* EPS */
/* TMUXA */
/* TMUXB */
/* DCS */
/* Modem */

else if (p < 32) /* 1st - 31st periods have 4 A/D samples */

{
inpw(AD_FIFO) ; /* discard - double EPS reading */
ad_values[p] [0] = inpw(AD_FIFO) & OxOFFF
ad_values[p] [1] = inpw(AD_FIFO) &. OxOFFF
ad_values[p][2] = inpw(AD_FIFO) & OxOFFF

}

/* EPS */
/* TMUXA */
/* TMUXB */

else /* remaining periods have only 2 A/D sample */

{
inpw(AD_FIFO) ; /* discard - double EPS reading */
ad_values[p] [0] = inpw(AD_FIFO) & OxOFFF; /*.EPS */

/♦if*********************************/

/* Check Current Direction Sensing */
/*****+*****************************/

/* Was there a battery current reading in EPS ? */
if (ad_sch_eps[p][0] -= CUR_DIR)

(
/* Read the direction. */
pcbr_m(EPSl, 1, temp) /* Port 5 of the EPS */

/* Was it Battery A or B ? */
if (ad_sch_eps[p] [1] == 0x90) /* Port 3 tells MUX selection */

negative_current [p] = (temp 4 0x01) ? FALSE : TRUE;
else

negative_current [p] = (temp & 0x02) ? FALSE : TRUE;

/*********************** + ****** + ***/

/* Setup via PCB for new readings */
/**********************************/

/* Has a complete set of data been read? Ready to start over? */

P++;
if (p >= NUM_PERIODS)

(
p = 0;
samples_ready = TRUE;

)
period = p;

/* PCB commands for the MUXes */
if (p < 32)

t
pcbw_m (TMUXA0, 0, 0xl0+p)
pcbw_m(TMUXB0, 0, 0xl0+p)

/* PCB commands for the EPS */
if (ad_sch_eps[p][1] != NOT_USED) /* Program EPS Port 3 ? */

{
pcbw_m(EPS0, 3, ad_sch_eps[p][1])

)

/* There is always something sent to EPS Port 1 */
pcbw_m(EPS0, 1, ad_sch_eps[p] [2])

/***************************+**/

126

/* Setup A/D for new readings */

outpw(AD_CONFIG, 0x0002); /* RESET, point to RAM 00 */

/* Wait for RESET bit to clear */
for (x = 0; (x < AD_WAIT) && (inpw (AD _CONFIG) & 0x0002); x++)

if

{

}

(x == AD_WAIT)

ad_flag = AD_RESET_ERROR
/* Send non-specific EOI
outpw(0xFF22, 0x8000);
return;

to Interrupt Controller */

if

{
(P == 0)

outpw(AD_INSTR0, 0xF2 0 8)
OUtpw(AD_INSTR1, 0XF208)
OUtpw(AD_INSTR2, 0xF210)
OUtpw(AD_INSTR3, 0xF218)
OUtpw(AD_INSTR4, 0xF2 0 0)
OUtpw(AD_INSTR5, 0xF204)
OUtpw(AD_INSTR6, 0xF202)

/*
/*
/*
/*
/*
/*
/*

EPS */
EPS */
TMUX A */
TMUX B */
DCS */
Modem */
Pause */

outpw(AD_IER, 0x3004);
c = 6;

/* interrupt w/ 6 samples in FIFO */

}
else if (p < 32)
/
i

OUtpw(AD_INSTR0, 0XF208)
outpw(AD_INSTR1, 0XF208)
outpw(AD_INSTR2, 0xF210)
OUtpw(AD_INSTR3, 0xF218)
outpw(AD_INSTR4, 0XF202)
outpw(AD_IER, 0x2004);
c = 4;

/*
/*
/*
/*
/*

EPS */
EPS */
TMUX A */
TMUX B */
Pause */
/* interrupt w/ 4 samples in FIFO */

}
else

\

OUtpw(AD_INSTR0, 0XF208)
OUtpw(AD_INSTR1, 0xF2 0 8)
outpw(AD_INSTR2, 0xF2 02)
outpw(AD_IER, 0x1004);
c = 2;

/*
EPS */
EPS */
Pause */
/* interrupt w/ 2 sample in FIFO */

outpw(AD_C0NF1G, 0x0008);
/* Wait for CALIBRATION bit t
for (X = 0; (x < AD_WAIT) &&

/*
o clear
(inpw (AD

Full Calibration */

*/
_CONFIG) & 0x0008); X++

if

{
(x == AD_WAIT)

ad_flag = AD_CALIB_WAIT_I 3RR0R,

}

/* Send non-specific EOI
outpw(0XFF2 2, 0x8000);
return;

to Interrupt Controller */

outpw (AD_C0NFIG, 0x0001); /* start sequencer */

/* Send non-specific EOI to I nterrupt Controller */
outpw(0xFF22, 0x8000) ,-

} /* End of ad_isr() */

/♦A***
*
* void ad_check()
*
* Check ad_flag for error condition.
*

void ad check(void)

static int reset_count = 0;
static int fifo_count = 0;
static int calib_count = 0;
DWORD reset time = 0L;

127

DWORD fifo_time = OL;
DWORD calib_time = OL;
DWORD t;

t = get_elapsed_time () ,•
switch(ad_flag)

{
case AD_NO_ERROR:

break ;

case AD_RESET_ERROR:
/* This is a bad problem with no real fix. try initializing again. */
if ((++reset_count > 10) && (t - calib_time < ONE_MINUTE))

{
/* Force a shutdown */

}
ad_init () ;
break;

case AD_FIFO_CODNT_ERROR:
/* There was a count error trying to access the FIFO in ad_isr() .
* Try initializing the A/D again and try acquisition.
*/

if ((++fifo_count > 10) £=& (t - calib_time < ONE_MINOTE))

{
/* Force a shutdown */

)
ad_init () ;
break;

case AD_CALIB_WAIT_ERROR:
/* This occurs only within ad_init() . It is a bad problem with no
* real fix.

*/

/* Force a shutdown */
break;

default:
break,-

}

ad_flag = AD_NO_ERROR;

} /* End of ad_check() */

/** + **
*
* void ad_collect()

* Take all raw sensor readings from the last entire round of A/D collecting
* and organize into the telemetry structure within the .sensors structure.

* This organization takes data collected in sequence from the A/D ISR, and
* places it into the .sensors structure which is organized per sensor type.
*
* This is simplified by using ad_collect_table[] which has an entry for
* every A/D acquisition that took place in the last A/D sweep.
*
fr***/

void ad_collect(void)

{
int i ;
int pos ;

for (i = 0; i < NUM_PERIODS; i++)

{
if (i == 0)

{
/* DCS St Modem Temps, EPS, TMUXA, and TMUXB readings are available */
tlm.sensors.tmp[0] = ad_values[0] [3] ;
tlm.sensors.tmp[1] = ad_values[0] [4] ;

/* Read EPS below.. . . */

tlm.sensors, ts [0] = ad_values[0] [l] ,■ /* TMUXA */
tlm.sensors.ts[l] = ad_values[0][2]; /* TMUXB */

} /* End of IF (i == 0) */

128

else if (i < 32)

{
/* Read EPS below.... */

/* EPS, TMUXA, and TMUXB readings are available */
tlm.sensors.ts [i*2] = ad_values[i] [1]; /* TMUXA */
tlm.sensors.ts [(i*2)+l] = ad_values [i] [2]; /* TMUXB */

} /* End of IF (i < 32) */

/* All periods have an EPS reading, move it */
pos = ad_collect_table[i].position;
switch(ad_collect_table[i].type)

{
case V_BATTA:

tlm.sensors.vbatta[pos] = ad_values[i] [0];
break;

case V_BATTB:
tlm.sensors.vbattb[pos] = ad_values [i] [0];
break;

case V_BUS:
tlm.sensors.vscbus = ad_values[i][0] ;
break;

case I_BATTA:
tlm.sensors.ibatta[pos] = ad_values[i] [0];
if (negative_current[i])

tlm.sensors.ibatta[pos] |= 0x8000;
break;

case I_BATTB:
tlm.sensors.ibattb[pos] = ad_values [i] [0];
if (negative_current[i])

tlm.sensors.ibattb[pos] |= 0x8000;
break;

case I_BUS:
tlm.sensors.iscbus[pos] = ad_values[i][0];
break;

case I_SOLAR:
tlm.sensors.isolar[pos] = ad_values[i][0];
break;

default: /* ERROR */
i + +;
i--;
break;

} /* End of SWITCH (ad_collect_table[i].type) */

} /* End of FOR */

samples_ready = FALSE; /* flagged by ad_main_isr () - waiting for next A/D */

} /* End of ad_collect() */

End of ad.h ad.c

129

bcm.h bcm.c

*
* BCM.H
*
* Battery Charge Monitor for Pansat
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Homing (Jah)
*
* Revision History:

*
* Date Who What

* 29 Jan 1997 Jah Creation
*

#define BCM_V_TH_STEPS 5 /* # of looksups in the voltage threshold (vs.
* temperature) lookup table
*/

«define BCM__NUM_BATS 2 /* # of batteries */
#define BCM_NUM_CELLS 9 /* cells/battery */

#define BCM_NUM__MODES 3 /* Low, Standby, and Normal operation modes */

/* Power Use Modes determined by charge states of the batteries */
#define BCM_MODE_LOW 0
#define BCM_MODE_STANDBY 1
#define BCM MODE NORMAL 2

/* Values to define the battery which is online and target (charging) . */
#define BAT_A 0
#define BAT_B 1
#define BAT_NONE 2

/* Battery Controls */
«define CTRLJTRICKLE 0x01
«define CTRLJDNLINE 0x02
«define CTRL_DISCHARGE 0x04
«define CTRL_CHARGE 0x08

/* Operational modes, depending on state of batteries */
«define MODE_L0W BCM_MODE_LOW
«define MODE_STANDBY BCM_MODE_STANDBY
«define MODE NORMAL BCM MODE NORMAL

/* This structure holds all of the BCM variables which includes all of the
* charge state history variables as well as variables which are used to
* make decisions within the BCM.

* The following structure is used by other modules to access the BCM states
* by using the void bcm_info (bcm_info_struct *info) function.
*/

typedef struct bcm_info

{
int count [BCM_NUM_BATS] ;
float cap [BCM_NUM_BATS] ;
int online;
int target;
int mode;
int dod_detect;
int eclipse;
unsigned long inttimer;
int online_switch;
WORD control [BCM_NUM_BATS] ;

/* reconfigurable variables which affect charging decisions */
float dod[BCM_NUM_BATS];
float temp_max;
int count_max;
float over_int;
float cap_max[BCM_NUM_BATS] ;
float efficiencytBCM_NUM_BATS];

float v_threshold[BCM_NUM_BATS] [BCM_V_TH_STEPS] ;

130

float vth_low [BCM_NUM_BATS] ;

unsigned long intover_times [BCM_NUM_MODES] ;

} bcm_inf o_struct ;

/* This structure holds all of the BCM variables which can be modified by other
* modules when it is desired to change the parameters of the BCM.
*
* The following structure is used in conjunction with the BCM function named
* bcm_set_params(bcm_params_struct *params).
*/

typedef struct bcm_params

{
int dod[BCM_NUM_BATS];
float temp_dt;
float temp_max;
int count_max ;
float over_int;
float cap_max[BCM_NUM_BATS] ;
float efficiency [BCM_NUM_BATS] ;
float v_threshold[BCM_NUM_BATS] [BCM_V_TH_STEPS];
float vth_low[BCM_NUM_BATS] ,-
unsigned long intover_times [BCM_NUM_MODES] ;

} bcm_params_struct;

/* Include specifics for BCM.C */
#ifdef BCM

/* Redefine shorthands for BCM routines */
#def ine NUM_BATS BCM_NUM_BATS
«define V_TH_STEPS BCM_V_TH_STEPS
«define NUM_MODESBCM_NUM_MODES
«define NUM_CELLS BCM_NUM_CELLS
«define NUM_CELL_TEMPS 10

/* Charge state history */
«define CS_BAD -3
«define CS_UNKNOWN -2
«define CS_FORCE_OVER -1
«define CS_OVERCHARGED 0
/* positive charge state values are counts (the « of re-charge cycles on a battery */

/* Initial parameters */
«define DOD 0.40/* Depth of Discharge (% BELOW 100%) */
«define TEMP_LOW 5.0 /* Minimum temperature before heating batteries */
«define TEMP_MAX 35.00 /* Maximum temperature for charging */
«define COUNT_MAX 5 /* # of REcharges before OVERcharge */
«define OVER_INTEGRATE 1.20/* OVER Current integration allowed

* (safety check) before stop charging */
«define CAP_A 4.40/* Battery A A*hr capacity */
«define CAP_B 4.40/* Battery B A*hr capacity */
«define EFF_A 0.83/* Battery A Efficiency */
«define EFF_B 0.83/* Battery B Efficiency */

/* Timers (in seconds I for overcharge checking */
«define TIMER_LOW (2.SL * SECS_PER_HOUR)
«define TIMER_STANDBY (3.5L * SECS_PER_HODR)
«define TIMEFNORHU, (4.SL * SECS_PER_HOUR)

«define TRICKLETIME FIVE_MINUTES

/* This is the tii» set on target_time [] to indicate that a battery has not
* been charged yet.
*/

«define KAXTASSCT TIME ((unsigned long int) 4294967296)

«define VTH_LOW_BATA 1.20/« Undervoltage threshold to trigger overcharge */
«define VTH_LOW_BATB 1.20

/* Low cell voltages that trigger battery preference decisions */
«define VLOW 0.90/* Minimum cell voltage for "healthy" battery */
«define VMAX_LOW 1.10/* Minimum Maximum cell voltage for charged battery */

static void bcm_charge(void);
static int bcm_check_conditions(void);
static void bcm_mode(void);
static int bcm_in_eclipse(void);

131

static void bcm_online (int preferred);
static void bcm_overcharge(void);
static void bcm_recharge(void);
static void bcm_set_params (bcm_params_struct *pararas) ;
static int bcm_set_switches (void) ;
static void bcra_target(int preferred);
static int bcm_tbound (signed char t) ;
static void bcm_v_max_clear(int battery);
static float bcm_v_max_min(int battery);
static float bcra_v_min(int battery) ;
void bcm_tlm_update(void);

#endif

/* Includes for all modules (except BCM.C) referencing this BCM.H */
Sifndef BCM

extern int bcm_get_mode(void);
extern void bcm_inf o (bcm_inf o_struct *) ;
extern void bcm_init(void);
extern void bcm_main(void);
extern void bcm_set_params (bcm_params_struct *);
extern void bcm_tlm_update(void);

#endif

*
* BCM.C
+

* Battery Charge Monitor for Pansat
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.

* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + +
* 29 Jan 1997 Jah Creation
* 7 Feb 1997 Jah Remove Delta-Temperature checks in charging.
* 24 March 1997 Jah Use get_elpased_time () instead of get_time().
* Check for trickle charge time for both batteries.
*
♦fr**/

#include <stdio.h>
Sinclude <stdlib.h>

#include "gen_defs .h"

(♦include "clock.h"
#include "pcb.h"

#define BCM
#include "bcm.h"
#undef BCM

tinclude "ad.h"
tinclude "dcs.h"
#include "eps.h"
#include "tlm.h"

/* Assume unknown charge state for both batteries (i.e. dead) */
static int count[NUM_BATS] = {CS_UNKNOWN, CS_UNKNOWN};

/* Assume no capacity for both batteries */
static double cap[NUM_BATS] = {0.0, 0.0};

static int online = BAT_NONE;
static int target = BAT_NONE;
static int mode = MODE_LOW;
static int dod_detect = FALSE;
static int eclipse = TRUE;
static unsigned long int over_timer = OL;
static int online_switch = FALSE;
Static WORD control[BCM_NUM_BATS] = {0, 0};

/* Time since a battery was choosen as a Target. This is originally set to
* "infinity", so that the BCM knows that this parameter has not been used.

132

* Otherwise, this timer indicates how long a target has been charging.
* This variable is only used when a battery's charget state history is
* UNKNOWN (e.g. deployment, reset, or data corruption) .
*/

static DWORD target_time [NUM_BATS] = {OL, OL};

static float vbatt_avg[NUM_BATS] = {0.0, 0.0},- /* Battery Cell Voltage averages */
static signed char t_avg [NUM_BATS] = {0.0, O.O}; /* Battery Cell Temperature averages */

/* Record of growing Maximum cell voltages of a battery while it is charging.
* This information is used after the battery is charged to determine if
* the lowest maximum voltage of these cells in a battery are below an
* acceptable value for a battery which is in good condition.
*/

static float v_max_cells[NUM_BATS][NUM_CELLS] =

{
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}

/* reconfigurable variables which affect charging decisions */
static float dod [NUM_BATS] = (DOD, DOD);
static float temp_max = TEMP_MAX;
static int count_max = COUNT_MAX;
static float over_int = OVER_INTEGRATE;
static float cap_max [NUM_BATS] = (CAP_A, CAP_B};
static float efficiency[NUM_BATS] = {EFF_A, EFF_B};
static float vth_low [NUM_BATS] = {VTH_LOW_BATA, VTH_LOW_BATB}

«define T_LOW -5.0
«define T_HIGH 35.0
static float v_threshold [NUM_BATS] [V_TH_STEPS] =

{
{1.46, 1.46, 1.46, 1.46, 1.46},
{1.46, 1.46, 1.46, 1.46, 1.46}

)t

static unsigned long int over_times [NUM_MODES] =
{

TIMER LOW, TIMER STANDBY, TIMER NORMAL

*
* void bcm_main(void)

void bcm_main(void)

{
int preferred;

/* get new telemetry */
bcm_tlm_update();

/* Determine if in eclipse */
eclipse = bcm_in_eclipse() ;

/* Determine preferred battery */
preferred = bcm_check__conditions () ;

bcm_online(preferred);
bcm__target (preferred) ,-
bcm__mode () ;
bcm_charge() ;

if (bcm_on)
bcm_set_switches();

} /* End of bcm_main{) */

* void bcm_charge (void)

* Determine if charging is to occur.

133

void bcm_charge(void)

{
if (eclipse == FALSE)

{
if (target != BAT_NONE)

{
/* There is a Target, and the spacecraft is NOT in eclipse.
* What type of charging does the Target require?
*/

if ((count [target] < CS_OVERCHARGED) || (count [target] >= count_max))
bcm_overcharge();

else
bcm_recharge () ;

}

}

} /* End of bcm_charge() */

*
* int bcm_check_conditions(void)
*
* Determine condition of batteries and wether or not there is a preferred
* battery to use.

«define WARM -2
«define COOL -1
«define NUM_COND_STATES 5

int bcra_check_conditions(void)

{
int not_op [NUM_BATS] ;
int preferred;
int i, a, b;
static int action [NUM_COND_STATES] [NUM_COND_STATES] =

(
{WARM, BAT_A, BAT_A, BAT_A, BAT_B) ,
{BAT_B, WARM, BAT_A, BAT_B, BATJB) ,
{BAT_B, BAT_B, BAT_NONE, BAT_B, BAT_B},
{BAT_B, BAT_A, BAT_A, COOL, BAT_B) ,
{BAT_A, BAT_A, BAT_A, BAT_A, COOL}

};
static signed char condition [NUM_COND_STATES] = {-10,0, 35, 45, MAX_CHAR};

/* start by assuming both batteries are usable */
not_op[BAT_A] . not_Op[BAT_B] = FALSE;

/* First, check if there is a target battery */
if (target ! =. BAT NOME!

{
/* Want to look at the lowest cell voltage, but only after the target
* has been trickle charged, and then normal charged for the fixed
* length o! times.
*/
if (get_elap8ed_time() > target_time [target] + TRICKLEJTIME)
{

/* Make surr lowest cell voltage is above a certain amount. */
if (bcir_v_wiri I target) < VLOW)

notop[target] « TRUE;

}
}

/* Now, check if any battery has already been charged at least once. If
* so, and the battery is NOT the target (being charged) , then check the
* lowest of the maximum cell voltages while the battery was charging. This
* minimum of the maximum cell voltages must be above a certain amount.
*/

for (i = 0; i < NUM_BATS; i++)

{
if (i != target)

{
if (count[i] != CS_UNKNOWN)

{
/* Check minimum of the maximum cell voltages */

134

if (bcm_v_max_min(i) < VMAX_LOW)
not_op[i] = TRUE;

/* If there is a preferred battery, then indicate. Otherwise, do temperature
* tests to still see if there is a preferred battery.
*/

preferred = not_op [BAT_A] ? (not_op [BAT_B] ? BATJJONE : BAT_B) : (not_op [BAT_B] ? BAT_A : BAT_NONE) ;

if (preferred == BATJTONE)
{

/* For each battery, find which temperature category it falls within */
for (i = 0; i <= NUM_COND_STATES - 1; i++)

{
if (t_avg[BAT_A] < condition[i])

break;

}
a = i;

for (i = 0; i <= NUM_COND_STATES - 1; i++)

{
if (t_avg[BAT_B] < condition [i])

break;

)
b = i;

switch(action[b][a])

{
case WARM:

preferred = (t_avg[BAT_A] >= t_avg [BAT_B]) ? BAT_A : BAT_B;
break;

case COOL:
preferred = (t_avg[BAT_A] <= t_avg [BAT_B]) ? BAT_A : BAT_B;
break;

case BAT_A:
preferred = BAT_B;
break;

case BAT_B:
preferred = BAT_B;
break;

case BAT_NONE:
preferred = BAT_NONE; /* no preference */
break ,-

default: /* error */
preferred = BAT_NONE;

}
I

return(preferred) ;

} /* End of bcm_check_conditions() */

* int bcm_get_mode(void)
*
* Report which operation mode the batteries are capable of supporting.

•»•••A**/

int bcm_get_mode(void)

{
return(mode);

} /* End of bcm_get_mode() */

*
* int bcm_in_eclipse(void)
*
* Determine if the spacecraft is in eclipse.
*

135

int bcm_in_eclipse(void)

{
if (tlm_cnv.iscbus < 0.050)

return(TRUE);
else

return(FALSE) ;

} /* End of bcm_in_eclipse */

Z***,^^^
*
* void bcm_info(*bcm_info_struct info)
*
* Return information that describes the state of the BCM.
*
**/

void bcm_info(bcm_info_struct * info)
{

register int i, j ;

info->online = online;
info->target = target;
info->mode = mode;
info->dod_detect = dod_detect;
info->eclipse = eclipse;

/* This is for the elased overcharge timer for the target battery */
if (over_timer ! = 0L)

info->timer = get_elapsed_time () - over_timer; /* duration of overcharging */
else

info->timer = 0L; /* indicate not in use */

info->online_swi ten = online_switch;

info->temp_max = temp_max;
info->count_max = count_max;
info->over_int = over_int;

for (i = 0; i < NUM_BATS; i++)
{

info->countti] = count[i];
info->cap[i] = cap[i];

info->control[i] = control[i];

info->cap_max[i] = cap_max[i];
info->efficiency[i] = efficiency[i];

info->vth_low[i] = vth_low[i];

info->dod[i] = dod[i];

for (j = 0; j < V_TH_STEPS; j++)
info->v_threshold[i] [j] = v_threshold[i] [j];

for (i = 0; i < NUM_MODES; i++)
info->over_times[i] = over_times[i];

} /* End of bcm_info() */

*
* void bcm_init(void)
*
* Initialize the BCM. This is used to force a reset of the BCM for example
* when a data error has occurred and the charge state variables are no
* not valid.

void bcm_init(void)

{
register int i, j;
int preferred,-

***************/

/* Determine preferred battery */
preferred = bcm_check_conditions();

136

if (preferred != BAT_NONE)

{
/* There is a preferred battery due to environmental/battery
* performance criteria. Use this battery regardless of
* other charge state history information.

*/
online = preferred;

)
else

online = BAT_A; /* otherwise, default to Battery A */

target = BATJTONE;
mode = MODE_LOW;
dod_detect = FALSE;
eclipse = TRUE;
over_timer = OL;
online_switch = FALSE;

temp_max = TEMP_MAX;
count_max = COUNT_MAX;
over_int = OVER_INTEGRATE;

cap_max[0] = CAP_A;
cap_max[l] = CAP_B;

efficiency[0] = EFF_A;
efficiency[1] = EFF_B;

vth_low[0] = VTH_LOW_BATA;
vth_low[l] = VTH_LOW_BATB;

for (i = 0; i < NUM_BATS; i++)
{

/* Maximum cell voltages, recorded while battery is charging. */
for (j = 0; j < NUM_CELLS; j++)

v_max_cells[i][j] = 0.0;

count[i] = CS_UNKNOWN;
cap[i] = 0.0;
target_time[i] = 4294967295L;

t_avg(i] = 0.0;

dod[i] = DOD;

}

over_times [MODE_LOW] = TIMER_L0W;
Over_times [MODE_STANDBY] = TIMER_STANDBY;
Over_times tMODE_NORMAL] = TIMER_NORMAL;

/* Turn OFF all battery controls, but leave the ONLINE battery online */
eps_batts_off(online);

} /* End of bcm_init() */

*
* int bcm_mode(void)
*
* Determine which operation mode the batteries are capable of supporting.

void bcm_mode(void)

{
register int other;

Other = (online == BAT_A) ? BAT_B : BAT_A;

if (count [online] == CS_DNKNOWN)
mode = M0DE_L0W;

else if (count[other] == CS_UNKN0WN)
mode = MODE_LOW;

else if (cap [online] < cap_max [online] * (1. 0 - dod [online]))
mode = (cap_max [other] < cap_max [other] * (1. 0 - dod [other])) ? MODE_LOW : MODE_STANDBY ;

else
mode = (cap [online] < cap_max [online] * (1. 0 - dod [online])) ? MODE_STANDBY : MODE_NORMAL;

137

} /* End of bcm_mode() */

*
* void bcm_online(void)
*
* Determine which battery should be online. *

void bcm__online (int preferred)
f

online switch = FALSE;

if (preferred != BATJJONE)

{
/* There is a preferred battery due to environmental/battery
* performance criteria. Use this battery regardless of
* other charge state history information.
*/

if (preferred != online)
online_switch = TRUE;

online = preferred;

if ((captonline] <= cap_max[online]*(1.0 - dodtonline])) ||
(vbatt_avg[online] < vth_low[online]))
dod detect = TRUE;

}
return;

/* Is there already a battery online ? */
else if (online != BAT_NONE)
{

/* Has the voltage of the online battery dropped below its
* low voltage threshold.
*/

if ((vbatt_avg [online] < vth_low [online]) && (count [online] >= 0))

/* The online battery has charge history and is not
* acknowledge as needing OVERCharge. Yet, its average
* voltage has dropped below a voltage threshold, signifying
* it has less capacity than expected. Therefore, force it to
* be overcharged in its next charge cycle.
*/

count[online] = CS_FORCE OVER;
}

/♦ Is the online battery below DOD ? */
if ((captonline] <= cap_max [online] * (1. 0 - dod [online])) ||

(vbatt_avg[online] < vth low[online]))
f

/* What is the Target? If there is already a Target, then
* the Target must remain charging, and the Online battery must
* remain online until the Target finishes charging. Therefore,
* DOD has been reached and a temperature reference must be set
* on the Target since charging will now occur at a quicker rate
*/

if (target != BAT_NONE)
{

/* There is a Target battery. Is this the first time this
* (below DOD) been detected? If so, mark the Target's
* temperature for charging decisions.
*/

if (!dod_detect)
dod_detect = TRUE;

}

else/* There is no Target, switch the online battery */

online_switch = TRUE;
switch(online)

{
case BAT_A:

online = BAT_B;
break;

case BAT_B:
online = BAT_A;
break;

default:

138

/* This is an ERROR case and should never happen */
online = (cap[BAT_A] >= cap[BAT_B]) ? BAT_A : BAT_B;
break;

}
}

} /* End of cap[online]... */

else/* enough capacity still, no action */

(
}

} /* End of if {online != BAT_NONE) */

else/* There is no online battery, choose one */
{

if (count [BAT_A] == CS_UNKNOWN)
/* Battery A has no charge state history, how about Battery B? */
online = (count [BAT_B] == CS_UNKNOWN) ? BAT_A : BAT_B;

else/* A has charge state history, but what about B ? */

{
if (count [BAT_B] == CSJJNKNOWN)

online = BAT_A;
else

online = cap [BAT_A] >= cap[BAT_B] ? BAT_A : BAT_B;

}

/* Since a new battery has JUST been selected to become online, force
* DOD detect to FALSE.
*/
dod_detect = FALSE;

} /* End of else {no online battery...) */

} /* End of bcm_online() */

/****************************+**

*
* void bcm_overcharge(void)
+

* Perform charging on the Target using the OVERcharge method.
*
**/

void bcm_overcharge(void)

{
/* First, check to make sure the temperature of the Target is low enough. */
/* However, this ignored when first starting in case there was a hot-soak
* on the spacecraft while in the shuttle bay which would cause the
* spacecraft to be hot when ejected immediate cooling is expected.
*/

if ((t_avg[target] <= temp_max) || (get_elapsed_time() < ONE_HOUR))

{
/* Check so that the Target has not OVER Integrated, a safety check */
if (capftarget] < cap_max[target]*over_int)

{
/* Has the Target reached the voltage threshold which is indicative
* over beginning to reach the overcharge portion of the charge
* cycle? If overcharge timer (overtime) is NOT zero, then it is
* already active, which means the voltage threshold was already reached
* earlier.

*/
if ((vbatt_avg [target] < (v_threshold [target] [bcm_tbound ((signed char) t_avg [target])])

&& (over_timer == (unsigned long int)OL)))

{
/* Below the voltage threshold, continue charging */
/* no new action needed. */

}

else/* OVERcharge */
{

if (over_timer =- OL)
{

/* Begin the overcharge, mark the time. Non-zero means the timer
* is active.

*/
over_timer = get_elapsed_time () ;

)

else/* Already in overcharge, how is it going? */

{

139

if (get_elapsed_time0 >= (over_timer + over times[mode]))
{

count[target] = CS_OVERCHARGED;
cap[target] = cap_max[target];
target = BAT_NONE;
dod_detect = FALSE;
over_timer = OL;

}

else

{
/* Continue overcharge using NON DOD detect method. */
/* No new action needed. */

}

else/* OVER integration occured, stop the charging. */

{
count [target] = CS_OVERCHARGED;
cap[target] = cap_max[target] ;
target = BAT_NONE;
dod_detect = FALSE;

}

else /* TOO HOT */

{
/* Do not change capacity; however, it is ASSUMED that the battery charging
* is not complete. So, the count is placed to CS_FORCE_OVER, so that
* the next time this battery becomes the Target, it will be forced into
* OVERcharge.
*/

count[target] = CS_FORCE_OVER;
target = BAT_NONE;
dod_detect = FALSE;

}

} /* End of bcm_overcharge{) */

*
* void bcm_recharge(void)
*
* Perform charging on the Target using the REcharge method.
*

void bcm_recharge(void)

{
/* First, check to make sure the temperature of the Target is low enough. */
/* However, this ignored when first starting in case there was a hot-soak
* on the spacecraft while in the shuttle bay which would cause the
* spacecraft to be hot when ejected immediate cooling is expected
*/

if ((t_avg[target] <= temp_max) |j (get elapsed timed c ONE HOUR))
f

if (cap[target] >= cap_max[target])
{

/* REcharged */
count[target]++;
cap[target] = cap_max[target];
dod_detect = FALSE;
target = BAT_NONE;

}

else

{
/* Continue recharge. No new action needed. */

}
}

else/* TOO HOT */

{
/* Do not change capacity; however, it is ASSUMED that the battery charging
* is not complete. So, the count remains the same as well.
*/

target = BAT_NONE;
dod_detect = FALSE;

140

} /* End if bcm_recharge() */

/A**

* void bcm_set_params(bcm_params_struct *params)
*
* Allow BCM parameters to be modified.
*

void bcm_set_params(bcm_params_struct *params)

{
register int i, j ;

temp_max = params->temp_max;
count_max = params - >count_max;
over_int = params - >over_int ;

for (i = 0; i c NUM_BATS; i++)
{

cap__max[i] = params->cap_max[i] ;
efficiency[i] = params->efficiency[i] ;
vth_low[i] = params->vth_low[i] ;

for (j = 0; j < V_TH_STEPS; j++)
v_threshold[i] [j] = params->v_threshold[i) [j];

dodEi] = params->dod [i] ,-
}

for {i = 0; i < NUM_M0DES; i++)
over_times [i] = params->over_times [i] ;

} /* End of bcm_set_params() */

/***
*
* void bcm_set_switches()
*
* Set the battery switches according to all of the decisions made within one
* pass through the BCM.
*
**/

int bcm_set_switches(void)

{
register int offline;
register int not_target;
int mode;

/* Indicate which controls are set. Begin by setting all control status off */
offline = (online == BAT_A) ? BAT_B : BAT_A;
control[online] = 0;
control[offline] = 0;

not_target = (target =- BAT_A) ? BAT_B : BAT_A;

/* Turn on ONLINE switch for battery to be online. It doesn't matter if
* the online bateries are being switched (A->B) or (B->A) as long as you
* FIRST turn ONLINE a battery, and THEN turn OFFLINE the other.

*/
if (eps_set_battery(online, BAT_ONLINE) == ERROR)

return(ERROR);
if (eps_set_battery(offline, BAT_OFFLINE) == ERROR)

return(ERROR);
control[online] |= CTRL_ONLINE;

if (eclipse) /* turn OFF battery controls, EXCEPT online */
eps_batts_off(online);

else if (target != BAT_N0NE) /* turn ON all that needs to be - except online (already done) */

{
/* CHARGING: Normal or Trickle ? */

/* Only do Trickle charging on a battery that has no charge state
* history, and that has only been selected to be charged within

141

* the TRICKLE_TIME time frame.
*/

if ((count[target] == CS_UNKNOWN) &&
(get_elapsed_time() - target time[target]) < TRICKLE TIME)

{
/* Make sure all normal charging switches are OFF */
if (eps_set_battery(not_target, BAT_CHARGE_OFF) == ERROR)

return(ERROR);
if (eps_set_battery(target, BAT_CHARGE_OFF) == ERROR)

return (ERROR) ;

if (eps_set_battery(not_target, BAT_TRICKLE_OFF) == ERROR)
return(ERROR);

if (eps_set_battery(target, BAT_TRICKLE_ON) == ERROR)
return(ERROR);

control[target] |= CTRLJTRICKLE;

} /* End of IF (Trickle Charging) */

else/* Time for Normal Charging */

{
/* Make sure all trickle charging switches are OFF */
if (eps_set_battery(not_target, BAT_TRICKLE_OFF) == ERROR)

return(ERROR);

if (eps_set_battery(target, BAT_TRICKLE_OFF) == ERROR)
return (ERROR) ,-

if (eps_set_battery(not_target, BAT_CHARGE_OFF) == ERROR)
return(ERROR);

if (eps_set_battery(target, BAT_CHARGE_ON) == ERROR)
return(ERROR);

control[target] |= CTRL_CHARGE;

) /* END of ELSE (Normal Charging) */

} /* End of ELSE (target != BAT_NONE) */

else /* There is NO Target, so make sure all controls are OFF */

eps_batts_off(online); /* turn OFF battery controls, except online */

/* Now, check for the battery heaters */
mode = (t_avg[BAT_A] < TEMP_LOW) ? ON : OFF;
eps_set_power(PWR_HEATA, mode);

mode = (t_avg[BAT_B] < TEMP_LOW) ? ON : OFF;
eps_set_power(PWR_HEATB, mode) ;

} /* End of bcm_set_switches() */

*
* void bcm_target (void)
*
* Determine which battery should be (targeted) to charge, if any. *
* n.m.Htitnumtttiiimi.,,,«,,,

void bcm_target(int preferred)
{

if (preferred != BAT_NONE)
{

/* There is a preferred battery to set as the target due to
* environmental and battery performance criteria.
*/

/* Is there a target battery already, and is it the same as the
* preferred? If so, do not interrupt (restart) the target
* selection process.
*/

if (preferred != target)

{
if (count [preferred] == CS UNKNOWN)
(

target = preferred;
cap[target] = 0.0;

}

else if (count [preferred] == CS_FORCE_OVER)

142

target = preferred;

else if (cap[preferred] < cap_max[preferred)*(1•0 - dod[preferred]))
target = preferred;

/* else, the preferred battery is not ready to charge - leave it */

if (target != BATJJONE)

{
/* zero out the cell voltage maxes */
bcm_v_max_clear(target);

over_timer = OL; /* indicate just determined the target */
/* this is the overcharge timer */

target_time[target] = get_elapsed_time();

else if (target == BAT_NONE)

{
/* There is no target, try to choose one if appropriate. */
if (count [BAT_A] == CSJJNKNOWN)

{
/* A has no charge state history, it is the Target; however,
* if B is also the same, mark its charge history likewise.
V

if (count [BAT_B] == CS_UNKNOWN)
cap[BAT_B] = 0.0;

target = BAT_A;
cap[BAT_A] = 0.0;

}

/* How about B ? */
else if (count [BAT_B] == CS_UNKNOWN)

{
/* Battery B has no charge state history, but A does. */
target = BAT_B;
cap[BAT_B] = 0.0;

}

else

{
/* Does A need to be forced to overcharge ? */
if (count[BAT_A] == CS_FORCE_OVER)

target = BAT_A;

/* A does not need a overcharge forced, how about B? */
else if (count [BAT_B] == CS_F0RCE_0VER)

target = BAT_B;

else/* Need to look at Capacities now in order to decide. */
{

if (cap[BAT_A] <= cap[BAT_B])
target = (cap[BAT_A] <= cap_max [BAT_A] * (1. 0 - dod [BAT_A])) ? BAT_A : BAT_N0NE;

else
target = (cap[BAT_B] c= cap_max[BAT_B] * (1.0 - dod [BAT_B])) ? BAT B : BAT NONE;

}
}

if (target != BAT_NONE)

{
/* zero out the cell voltage maxes */
bcm_v_max_clear(target);

over_timer = 0L; /* indicate just determined the target */
/* this is the overcharge timer */

target_time[target] = get_elapsed_time0;

}

} /* End of IF (target == BAT_NONE) */

else

{
/* The Target has ALREADY been previously choosen, leave it. */

}

143

} /* End of bcm_target() */

*
* int bcm_tbound(float t)
*
* This funcion categorizies a temperature value into an index
* for table lookup into the voltage vs. temperature table
*
* v_threshold[target][temperature]

* to check if a
* charging battery has reached the voltage threshold.
*
* Jah: optimize

int bcm_tbound(signed char t)
{

unsigned char range = (unsigned char) (T_HIGH - T_LOW) ;
unsigned char dt = (unsigned char) (range/V_TH_STEPS) ;

signed char ace = (signed char)T_LOW; /* accumulator from T_LOW to T_HIGH in steps of dt */
register int i = 0; /* index corresponding to the temperature */

if (t >= T_HIGH)
return(V_TH STEPS - 1) ;

/

el

{

se

while (t

{
i + + ;

> acc)

acc
}

+ = dt;

}
return (i ;

} /* End of bcm_tbound() */

/***
*
* void bcm_tlm_update()

***************************/ ***

#define BAT_A_TS0 2
#define BAT_B_TS0 12

void bcm_tlm_update(void)

{
unsigned register int i, j;
WORD a, b;
WORD ta, tb;
int na, nb;
static DWORD t_old = 0; /* for dTime for Cap. calcs */

/* Voltages */
vbatt_avg [BAT_A] = tlm_cnv. vcellsa_avg;
vbatt_avg[BAT_B] = tlm_cnv.vcellsb_avg;

/* Now, update the maximum cell voltages */
for (j = 0; j < NUM_CELLS; j++)

if (v_max_cells [BAT_A] [j] < tlm_cnv.vcellsa [j])
v_max_cells[BAT_A] [j] = tlm_cnv. vcellsa [j] ;

for (j = 0; j < NDM_CELLS; j++)
if (v_max_cells [BAT_B] [j] < tlm_cnv.vcellsb [j])

v_max_cells [BAT_B] [j] = tlm_cnv.vcellsb [j] ;

/* Capacities */
if (tlm_cnv.ibatta < -0.020)

cap[BAT_A] += tlm_cnv.ibatta*((double) (tlm_record.etime - t_old) / (double) SECS_PER_HODR) ;
else if (tlm_cnv.ibatta > 0.020)

cap[BAT_A] += ef f iciency [BAT_A] *tlm_cnv. ibatta* ((double) (tlm_record.etime -
t_old)/(double)SECS_PER_HOUR);

144

if (tlm_cnv.ibattb < -0.020)
cap[BAT_B] += tlm_cnv.ibattb* ((double) (tlm_record.etitne - t_old) / (double) SECS_PER_HOUR) ,

else if (tlm_cnv.ibattb > 0.020)
cap [BAT_B] += ef ficiency[BAT_B] *tlm_cnv.ibattb* ((double) (tlm_record.etime -

t_old) / (double) SECS_PER_HOUR) ;
t_old = tlm_record.etime;

/* Temperatures */
/* Get first average with ALL measurements */
for (ta =0, tb = 0, i = 0; i < NUM_CELL_TEMPS; i++)

{
ta += tlm_cnv.ts[BAT_A_TS0 + i] ;
tb += tlm_cnv. ts [BAT_B_TS0 + i] ;

}
a = ta/NUM_CELL_TEMPS;
b = tb/NUM_CELL_TEMPS ,-
/* Now, remove any measurements that are above/below 5 degrees */
for (na = 10, rib = 10, i = 0; i < NUM_CELL_TEMPS; i++)
{

if ((tlm_cnv.ts[BAT_A_TS0 + i] >= (a + 5)) ||
(tlm_cnv.ts[BAT_A_TS0 + i] <= (a - 5)))

{
ta -= tlm_cnv.ts [BAT_A_TS0 + i] ;
na--;

}

if ((tlm_cnv.ts[BAT_B_TSO + i] >= (b + 5)) ||
(tlm_cnv.ts[BAT_B_TSO + i] <= (b - 5)))

{
tb -= tlm_cnv.ts [BAT_B_TS0 + i] ;
nb--;

}
}
/* Recompute the average */
if (na == 0)

t_avg[BAT_A] = a; /* weird case - avoid divide by zero */
else

t_avg[BAT_A] = ta/na;

if (nb == 0)
t_avg[BAT_B] = b; /* weird case - avoid divide by zero */

else
t_avg[BAT_B] = tb/nb;

} /* End of bcm_tlm_update() */

/********* + ********************* + ***
*
* void bcm_v_max_clear(int battery)
*
* Set the maximum cell voltages history all to zero in order to restart the
* recording of maximum cell voltages for a particular battery.

+*+*•*********** ************/

void bcm_v_max_clear(int battery)
{

register int i;

for <i = 0; i < NUM_CELLS; i++)
vjnax_cells[battery][i] = 0.0;

/* End of bcm_v_max_clear() */

*
* void bcm_v_max_min{int battery)

* Return the minimum cell voltage of all of the recorded maximum cell
* voltages for a particular battery.

**

float bcm_v_max_min(int battery)

{
register int i;
float x = 100.0;

for (i = 0; i < NUM_CELLS; i++)

145

if (v_max_cells[battery][i] < x)
x = v_max_cells[battery] [i] ;

return(x);

} /* End of bcm_v_max_min() */

* void bcm_y_min(int battery)

* Return the minimum cell voltage from the current telemetry record of cell
* voltages for a particular battery.
*

float bcm_v_min(int battery)

(
register int i;
float x = 100.0;

if (battery == BAT_A)
for (i = 0; i c NUM_CELLS; i++)

if (tlm_cnv.vcellsa[i] < x)
x = tlm_cnv.vcellsa[i] ;

else /* Must be battery B */
for (i = 0; i < NOM_CELLS; i++)

if (tlm_cnv.vcellsbti] < x)
x = tlm_cnv.vcellsb[i];

return(x);

} /* End of bcm_v_min<) */

End of bcm.h bcm.c

146

clock.h, clock.c

*
* CLOCK.H
*
* Real time clock for PANSAT
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Homing (Jah)

* Revision History:
* =================
*
* Date Who What
* + +
* 8 March 1996 Jah Creation

I**/

/* Tick intervals for day and time stamping */
#define SECS_PER_MIN 60L
#define SECS_PER_HOUR (SECS_PER_MIN*60L)
«define SECS_PER_DAY (SECS_PER_HOUR*24L)
«define SECS_PER_YEAR (SECS_PER_DAY*365L)

#define THIRTY_SECONDS (30L)
«define ONE_MINUTE (1L*SECS_PER_MIN)
tdefine TWO_MINUTES (2L*SECS_PER_MIN)
tdefine FIVE_MINUTES (5L*SECS_PER_MIN)
tdefine TEN_MINUTES (10L*SECS_PER_MIN)
tdefine ONE_H0ÜR (1L*SECS_PER_H0UR)

tifdef CLOCK
/* Timer2 is programmed to interrupt once every 1/60 second */
tdefine TICKS_PER_SECOND 60

void interrupt far clock_isr();
DWORD get_elapsed_time(void) ;
DWORD get_time(void) ;
void set_time(DWORD);

tendif

tifndef CLOCK
extern void interrupt far clock_isr() ;
extern DWORD get_elapsed_time(void);
extern DWORD get_time(void) ;
extern void set_time(DWORD);

tendif

/************* + **************************** + ********* + ************************
*
* CLOCK.C

Real time clock for PANSAT

Petite Amateur Navy Satellite (PANSAT).
Embedded ROM software.
Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
Jim A. Horning (Jah)

Revision History:

Date Who What
 H H
8 March 1996 Jah Adoption from STAR'S clock.c

r*******************+**************+**********+****************************/

«include "gen_defs.h"
«include "gen_apis.h"

«define CLOCK
«include "clock.h"
ttundef CLOCK

tinclude "edac.h"

static DWORD sec_count = 0L; /* total elapsed from time of startup */

147

static DWORD base_time = OL; /* UTC offset uses sec_count */

DWORD icount = OL;

/*** + ************ + ** + ***********
*
* clock_isr()
*
* This routine is invoked by Timer 2 (INT 13h) - the system clock tick
* mechanism. tick_count is the total number of ticks since the real time
* clock was initialized.
+

void interrupt far clock_isr()

{
static unsigned int interval = 0;

icount++;

if (++interval == TICKS_PER_SECOND)

{
interval = 0;
sec_count++;
/* edac_ram_wash(); */

}

/* Send non-specific EOI to Interrupt Controller */
outpw(0xFF22, 0x8000) ;

} /* End of clock_isr() */

* DWORD get_elapsed_time(void)

* Return system up time in number of elapsed seconds.
*

DWORD get_elapsed_time(void)

{

return (sec_count) ,-

} /* End of get_elapsed_time0 */

/****************+***********************************+*******************•****

* DWORD get_time(void)
*
* Return system time in number of elapsed seconds. Based on 1 Jan 1970.

DWORD get_time(void)

{
return(base_time + sec_count) ;

} /* End of get_time() */

*
* void set_time(DWORD t)
*
* base_time maintains the date/time at which the clock was set to a specific
* time. Thus, base_time + sec_count is the current time. While sec_count
* maintains the elapsed time since startup.
*

void set_time(DWORD t)

{
base_time = t - sec_count;

} /* End of set_time() */

End of clock.h, clock.c

148

cmd.h, cmd.c

*
* CMD.H
*
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + +
*
**

/***
*
* CMD.C
*
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Homing (Jah)
*
* Revision History:
* = = =:=:=: = = = = = = — - — — =: =
* Date Who What
* + +
* 19 Nov 1996 Jah Creation
*
**/

#include Mgen_defs.h"

#define CMD
#include ncmd.hn

#undef CMD

typedef struct ack_packet

{
BYTEcmd;
BYTE action;

} acl_packet_struct;

typedef struct cmd_packet

{
BYTEcmd;

/* Upcoming Command Types (from grounstation to spacecraft) */
#define CMD_CONFIRM 0x55
#define CMD_CONTROL 0x5A
#define CMD_EXEC 0xA5
#define CMD_GETP OxAA
#define CMD_LOAD 0x66
#define CMD_MAP 0x69
#define CMD__RESET 0x96
tdefine CMD~SETP 0x99
#define CMD_STATUS 0x00
#define CMD_SLOG_CLEAR OxOF
#define CMD_SLOG_READ OxFO
#define CMD_VERIFY OxFF
tdefine CMD_UNKNOWN 0x56 /* not an actual command, but used in the

* spacecraft ACK packet to identify the
* type of command that was received.

*/

/* Downgoing Action Types (from spacecraft to groundstation) */
#define ACT_CONFIRM 0x55
«define ACT_NONE OxAA
tdefine ACT_REPEAT 0x66
tdefine ACT UNKNOWN 0x99

149

* cmd_examine()

************ + ************************#** + * + *********** + * + **# + + t + ** + + #ir1t. + ilti

cmd_exaraine{)

{

switch (in_packet->cmd)

{
case CMD_CONFIRM:

ack_packet->cmd = CMD_CONFIRM;
ack_packet->action = ACT_CONFIRM;
break ,•

case CMD_CONTROL:
ack_packet->cmd = CMD_CONTROL ;
ack_packet->action = ACT_CONFIRM;
break;

case CMD_EXBC:
ack_packet->cmd = CMD_EXEC;
ack_packet->action = ACT_CONFIRM;
break;

case CMD_GETP:
ack_packet->cmd = CMD_GETP;
ack_packet->action = ACT_NONE;
break,-

case CMD_LOAD:
ack_packet->cmd = CMD_LOAD;
ack_packet->action = ACT_NONE;
break;

case CMD_MAP:
ack_packet->cmd = CMD_MAP;
ack_packet->action = ACT_NONE;
break;

case CMD_RESET:
ack_packet->cmd = CMD_RESET;
ack_packet->action = ACT_CONFIRM;
break;

case CMD_SETP:
ack_packet->cmd = CMD_SETP;
ack_packet->action = ACT_CONFIRM;
break;

case CMD_STATUS :
ack_packet->cmd = CMD_STATUS;
ack_packet->action = ACT_NONE;
/* append telemetry */
break;

case CMP SLOG CLEAR:
ack_packet->cmd = CMD_SLOG_CLEAR;
ack_packet->action = ACT_CONFIRM;
/* delete all stored telemetry */
break;

case CMD_SLOG_READ:
ack_packet->cmd = CMD_SLOG_READ ;
ack_packet->action = ACT_NONE;
/* append first record of stored telemetry */
break ,-

case CMD_VERIFY:
ack_packet->cmd = CMD_VERIFY ;

ack_packet->action = ACT_NONE;

ack_packet->action = ACT_REPEAT;
break,-

default: /* UNKNOWN */

/* Valid packet (CRC passed) , but command code is not valid */
ack_packet->cmd = CMD_UNKNOWN;
ack_packet->action = ACT_UNKNOWN;
break;

150

/* Place the command in the history buffer */

/* Now, send the packet to the packet driver */
scc_send_packet(out_packet);

} /* End of cmd_examine() */

End of cmd.h, cmd.c

151

dcs.h, dcs.c

*
* DCS.H
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)

* Revision History:
* =================
*
* Date Who What
* . ,
* 2 Nov 1993 Jah Creation
*

#ifdef DCS

#endif

ftifndef DCS
extern int debug;
extern int bcm_on;

#endif

/ittltltllllltltlttlllttttllllllitllttilttltltlitttllttttltllllltlllXtlliilK!
*
* DCS.C
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)

* Revision History:
* =================
* Date Who What
* . .
* 2 Nov 1996 Jah Creation
*

#include cstdlib.h>

#include "gen_de f s.h"

#define DCS
/* Sinclude "dcs.h" */
#undef DCS

#include "ad.h"
#include "bcm.h"
Sinclude "clock.h"
#include "eps.h"
#include "pcb.h"
#include "print.h"
#include "scc.h"
Sinclude "stpi.h"
#include "terms.h"
«include "tlm.h"

/* Function prototypes */
static void boot_loader (void) ;
static void boot_loader_setup(void) ,
static void info_screen(void);
static void stpi_only(void);
static void stpi_only_setup(void);
static int use_stpi(int *check);

int debug = FALSE;
int bcm on = TRUE;

*
* voidmain(void)

152

* This is the first routine of the C runtime which is called by the startup
* (assembler) module. This routine is responsible for determining if the
* Boot Loader should begin autonomous operations of the spacecraft or if
* the STPI is being used and control should be passed to the monitor for
* ground-like operations.
*
* To accomplish this, the PANSAT banner is sent out the asynch serial port
* in the event that a ground computer is attached and will send a response
* back to the spacecraft. Then this module waits upto 30 seconds for a
* response via the ground computer. If there is one, control is transferred
* to the STPI module, by-passing the Boot Loader. Otherwise, control is
* transferred to the Boot Loader which begins autonomous operation of the
* spacecraft.
*
* A two way flag is used to check for STPI use (and disabling of the Boot
* Loader) so that it is unlikely that just a single flag gets its value
* changed accidentally.
*

voidmain (void)

{
int stpi_on = FALSE;
int stpi_check = 0;

/* Send PANSAT banner to the STPI */
info_screen() ;

/* Jah - check time */
while (get_elapsed_time0 < 5)

{
stpi_on = use_stpi (&stpi_check) ,-
if (stpi_on && (stpi_check == 0x5A))

{
stpi_only();
/* STPI Monitor to be used, ground station computer is ready . */

/* If STPI Monitor was being used but control is transferred here,
* then the command to begin the Boot Loader was given. Thus, let
* the flow of control go to the WHILE loop below which starts the
* Boot Loader.

*/

/* Spacecraft is to run autonomously */
while (TRUE)

{
boot_loader () ;

/* The Boot Loader subroutine will run forever unless a command is
* given to disable the Boot Loader, in which case control will be
* transferred to the statements below. Thus, assume the STPI Monitor
* is to be run.
*/

/* STPI Monitor */
stpi_only() ;

/* The STPI Monitor subroutine will run forever unless a command is
* given to begin the Boot Loader. In this case, transfer of
* control will be given back to this WHILE loop, a new iteration
* of the loop will begin, and automatically the Boot Loader
* will be called.
*/

} /* End of main() */

/****************** + ****************** + ********************** + ****************
*
* voidboot_loader 0
*

void boot_loader(void)

{
static int run boot loader = TRUE;

/* Setup */

153

/* boot_loader_setup() ; */

while (run_boot_loader)

{
check_tlm();

bcm_jnain {) ;

/* RF Listen */

/* Check/Process command (via RF link) */

/* RF Transmit */

monitor () ;

/* Scenarios */

/* Reset Watchdog timer */

}

} /* End of boot_loader() */

/***++*+++++++++
*
* voidboot_loader_setup ()
*
**

void boot_loader_setup(void)
{

ad_init 0 ,-

if (msu_check_f lash_tlm() == ERROR)
{

/* There was an error trying to locate an empty record */

while (!samples_ready)

/* make sure BCM charge state variables are setup correctly */
bcm_main () ;

/* setup time to listen timer */

/* setup communications */

} /* End of boot_loader_setup() */

/**•********** + *

* info_screen()
*
ttmitnunn.miumtj,,,»,,,,,,,,«,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,^

void info_screen(void)

{
home();
clr() ;

dprint("\nPANSAT System Controller: ");
dprint ("%s\n" , DATE) ;
dprint("80C186 running at 7.3728 MHz\n");
dprint("ROM
dprint("RAM
dprint("SCCA
dprint("SCCB

F000:0 - F000:FFFF (64 k)\n");
0000:0 - 7000:FFFF (512 k)\n");
(Cmd = 2, Data = 6) Synchronous\n") ;
(Cmd = 0, Data = 4) UART at 19.2 kbits/sec, 8Nl\n");

serial_out(CTRL_W);

} /* End of info_screen() */

*
* voidstpi_only ()
*

154

void stpi_only(void)

{
static int run_stpi_only = TRUE;

while (run_stpi_only)

{
check_tlm{) ;

monitor();

}

} /* End of stpi_only() */

/***

* void stpi_only_setup ()
*

void stpi_only_setup(void)

{
/* bcm_off0 ; */

pcb_write(EPSO, 0, 0)
pcb_write(EPS0, 2, 0)
pcb_write(EPSl, 2, 0)

/* Battery A control, TMUXA, HEATA */
/* Other subsystem power */
/* Battery B control */

} /* End of stpi_only_setup() */

*
* int use_stpi()
*
* Monitor the STPI for the sequence of characters that spell PANSAT. If
* these are sensed in this order, then it is assumed that a ground computer
* is attached to PANSAT and PANSAT is to go into the STPI monitor mode.
*
* This routine is called repetitively during the first 3 0 seconds and thus
* keeps a record of any received characters from the SPTI and when six are
* received does a compare to the character sequence "PANSAT".
*

int use_stpi(int »check)

{
static char check_chars [6] ; /* 6 chars for PANSAT */
static int c = 0; /* index into check chars[] */

if (is_serial_in{))
check_chars[c++] = serial_in();

if (c == 6)
{

if (strncmp(check_chars, "PANSAT", 6) == 0)
{

*check = 0x5A;
serial_out (0x5A) ,-
return(TRUE);

}
}

return(FALSE);

/* End of use_stpi() */

End of dcs.h, dcs.c

155

edac.h, edac.c
/***+*

*
* EDAC.H

* Error Detection And Correction routines.

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
*
* Revision History:
* =================
*
* Date Who What

* 21 August 1996 Jah Creation
*
nttttt.mjnttHmHunttt.nniKminnntmHtnHium«»»!.!««!/

typedef struct edac_stats

{
BYTE huge * ram_wash_ptr;
DWORD soft_errors;
DWORD ram_wash_cycles;

} edac_stats_struct;

#ifdef EDAC

voidedac_get_stats (edac_stats_struct * stats);
void interrupt far edac_hard_isr() ;
void interrupt far edac_sof t_isr () ;
voidram_wash (void) ;

#endif

#ifndef EDAC

extern void edac_get_stats (edac_stats_struct * stats);
extern void interrupt far edac_hard_isr();
extern void interrupt far edac_soft_isr();
extern void ram_wash(void) ;

#endif

/******************••••••***
*
* EDAC. C
*
* Error Detection And Correction routines.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software

* Copyright (c) 199». Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah1

*
* Revision History
* ==========.......
* Date Wr.- What
*
* 21 August 199fc Jar. Creation

#include "ger.detG . h"

#define EDAC
#include "edac.h"
#undef EDAC

((include "int.h"

156

#define DOCON OxFFOO
#define DMAO_OFF OxFFFF
#define DMA1_0FF OxFFFF
fdefine RAM_WASH COUNT 64 /* 64 words */

/* This marks the location of the RAM wash in Static RAM. It is updated
* after ram_wash() finishes an interval of washing so that it marks
* where next to begin washing the next time ram_wash() is invoked.
*/

static BYTE huge * ram_wash_ptr = (BYTE huge *)0;

static DWORD edac_hard_err = OL;
static DWORD edac_soft_err = OL;
static DWORD ram_wash_cycles = OL;

+

* voidedac_get_stats()
*
* Returns the information about the EDAC. The current RAM Wash pointer,
* the number of soft errors.
*
fr***/

voidedac_get_stats (edac_stats_struct * stats)
{

stats->ram_wash_ptr = ram_wash_ptr;
stats->soft_errors = edac_soft_err;
stats->ram_wash_cycles = ram_wash_cycles;

} /* End of edac_get_stats() */

* edac_hard_isr{)
*

void interrupt far edac_hard_isr()

(

/* Send specific EOI to PIC */
outpw(INT_EOI, OxOOOE); /* Interrupt OxE (14) - INT 2 */

) /* End of edac_hard_isr0 */

/********* + ********•***•************ + * + + ****** + *********** + ***** + *************

*
* edac_soft_isr()
+

void interrupt far edacsoft_isr()

{
edac_soft_err**,

/* Clear the EDAC error •/
pcb_portc(2, RESET!- .
pcb_portc(2, SET),

/* Send specific EC1 to PIC */
outpw(INT_EOI, OxCCCFi, /* Interrupt OxF (15) - INT 3 */

} /* End of edac sott isrw */

* void edac_ram_wash(void)
*
* Washes a 128 byte contiguous block of SRAM. Uses ram_wash_ptr as the
* starting address. Updates ram_wash_ptr upon terminating.

void edac_ram_wash(void)

{
_asm

157

**/

pushds

Ids
mov
eld

si, DWORD PTR ram_wash_ptr
CX, RAM WASH COUNT

mov
in
mov
and
out

dx, DOCON
ax, dx
bx, ax
ax, DMA0_OFF
dx, ax

save a copy of DMAO config

DMA channel 0 disabled

mc
inc
in
mov
and
out

dx
dx
ax, dx
di, ax
ax, DMA1_0FF
dx, ax

save a copy of DMA1 config

DMA channel 1 disabled

cli
rep
sti

lodsw

mov
out
dec
dec
mov
out

ax, di
dx, ax
dx
dx
ax, bx
dx, ax

DMA1 config.
DMA channel 1 enabled

DMAO config.
DMA channel 0 enabled

ram_wash_ptr += 128; /* 64 words = 128 bytes were washed */
if (ram_wash_ptr > (BYTE huge *)0x7FFFFFFF)

{
ram_wash_ptr = (BYTE huge *)0;
ram_wash_cycles++;

/* End of edac ram wash() */

End of edac.h, edac.c

158

eps.h, eps.c
/***

* EPS.H
+

* Defines for the RF unit interface routines

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Homing (Jah)
*
* Revision History:
* =================
* Date Who What

* 30 Oct 1996 Jah

***/

/* Power control defines */
#define PWRJTMUXA 0
#define PWR_MSA 1
#define PWR_HEATA 2
tdefine PWR_HEATB 3
#define PWR_RF 4
#define PWRJTMUXB5
#define PWR_MSB 6
#define PWR_ANTREL 7

/* Battery Control defines */
#define BAT_ONLINE 1
#define BAT_OFFLINE 2
tdefine BAT_TRICKLE_ON 3
tdefine BAT_TRICKLE_OFF 4
#define BAT_CHARGE_ON 5
tdefine BAT_CHARGE_OFF 6
tdefine BAT_DISCHARGE_ON 7
tdefine BAT DISCHARGE OFF8

tifdef EPS
tdefine POWER ON DELAY OxlFFF

voideps_batts_of f (int) ,-
voideps_global_of f (void) ,•
void eps_set_port2 (BYTE value) ;
BYTE eps_get_port2 (void) ;
BYTE eps_get_battery (void) ;
int eps_set_battery(int battery, int mode),
WORD eps_get_power (void) ;
void eps_set_power (int device, int mode);
void eps_reset_wdog (void) ;

tendif

tifndef EPS
extern void
extern void
extern void
extern BYTE
extern BYTE
extern int
extern WORD
extern void
extern void

eps_batts_off(int);
eps_global_of f (void) ,-
eps_set_port2 (BYTE value);
eps_get_port2 (void) ;
eps_get_battery (void) ;
eps_set_battery (int battery, int mode) ;
eps_get_power(void);
eps_set_power (int device, int mode) ;
eps_reset_wdog(void);

tendif

159

/***
*
* EPS.C
*
* Interface routines for the EPS unit.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.

* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:

* Date Who What
* .
* 30 Oct 1996 Jah Creation

* 6 Dec 1996 Jah Changed port settings per Ron's EPS modifications
* 25 Feb 1997 Jah Keep Port 2, Bit 1 always on (the current MUX enable)
*

#include "gen_defs.h"

Sdefine EPS
Sinclude "eps.h"
#undef EPS

#include "bcm.h"
#include "pcb.h"

int check_bat(int battery, BYTE mask);

static BYTE portO = 0;
static BYTE port2 = 0x01; /* Current MUX enabled */
static BYTE port6 = 0;

/*************. n.tii.m.ttttmttmKtmtm.tmMnu,,,,,,,,,,,,,,,,,,,
*
* eps_batts_off()

* Power OFF all battery controls, EXCEPT the battery ONLINE controls.

*/ **

voideps_batts_off(int online)
{

if (online « BAT_A)
{

portO &= OxOF; /* ALL Battery A controls to be turned OFF */
portO |= 0x20; /* Battery A ONLINE to be turned ON */
port6 = 0; /* ALL Battery B controls to be turned OFF */

}

/* Write to portO FIRST to insure there remains a battery online */
pcb_write(EPS0, 0, portO);
pcb_write(EPSl, 2, port6);

else if (online -■ BATB)
{

/* Turn OFF All battery controls to A */
portO &= OxOF. /• ALL battery A controls to be turned OFF */
port6 » Cx2C. /« Battery B controls to be turned OFF, except ONLINE = ON */

/* Write to pert«. FIRST to insure there remains a battery online */
pcb_write(fcrs;. i, port6);
pcb_write(EPS-, C. portO);

}

} /* End of eps_battE_o!!(i •/

/* ******** ***************************************

eps_global_o£f()

* Power OFF all subsystems, and all battery controls, EXCEPT the battery
* ONLINE controls.
*
*******************,,**»,,****»*******„„ ****************»************ttttttl^

void eps_global_of f (void)

160

{
portO &= 0x20;
pcb_write(EPS0, 0, portO) ; /* All OFF except the online (if it is on) */

port2 = 0x01;
pcb_write(EPS0, 2, port2); /* Other subsystem power */

port6 &= 0x20;
pcb_write(EPSl, 2, port6); /* Battery B control OFF except the online (if it is on) */

} /* End of eps_global_off 0 */

*
* eps_set_port2 ()
*
* Power ON or OFF a subsystem, leaving others undisturbed.
*
♦I**/

void eps_set_port2 (BYTE value)

{
port2 = value j 0x01; /* Keep Current MUX enabled */
pcb_write(EPS0, 2, port2);

} /* End of eps_set_port2() */

* eps_get_port2()

* Power ON or OFF a subsystem, leaving others undisturbed.
*

BYTEeps_get_port2 (void)
{

return(port2);

} /* End of eps_get_port2() */

*
* eps_get_power<)

* Get power ON or OFF status for the subsystems.
*

WORD eps_get_power(void)

f
/* LSB is power bits of Port 0, MSB is power bits of Port 2
* Other bits pertaining to battery control, unused bits, or the
* S/P current inhibit and strobe are maksed off to 0.
*/

return((((WORD)port2 4 0x007C) << 8) | ((WORD)portO & OxOOOD));

} /* End of eps_get_power () */

* ep s_s e t_powe r()
*
* Power ON or OFF a subsystem, leaving others undisturbed.
*

void eps_set_power (int select, int mode)

{
register BYTE temp, mask;
WORD delay;

/* This table contains bit positions in EPS ports 0 & 2 for power control
* bits for the subsystems, heaters, and antenna release.
*/

static WORD power_table[] = {4, 8, 1, 0x40, 0x20, 0x10, 8, 4};

switch(select)

161

/* Port 0 Power Controls */
case PWR_TMUXA:
case PWR_MSA:
case PWR_HEATA:

if (mode == ON)
portO |= power_table[select];

else if (mode == OFF)
portO &= ~power_table[select];

else
return;

pcb_write(EPSO, 0, portO);
break;

/* Port 2 Power Controls */
case PWR_HEATB:
case PWR_RF:
case PHR_TMDXB:
case PWR_MSB:
case PWR_ANTREL:

if (mode == ON)
port2 |= power_table[select] ;

else if (mode == OFF)
port2 &= ~power_table[select] ;

else
return;

pcb_write(EPSO, 2, port2);
break;

default:
break;

if (mode == ON)

for (delay = 0; delay < POWER_ON_DELAY; delay++)

/

} /* End of eps_set_power() */

/**••.*.*•*****. tn.t»*.*.«.,,,..,,,,,»,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
*
* eps_get_battery()

**

BYTE eps_get_battery (void)
{

/* MSnibble is Battery A contorl bits of Port 0, LSnibble is Battery B
* control bits of Port 6. Other bits pertaining to battery control,
* unused, or the S/P current inhibit and strobe are maksed off to 0
*/

return(((port6 & OxFO)>>4) | (portO & OxFO));

} /* End of eps_get_battery() */

/**»•*.*.*»*««******** (tnnt(»itmititmjittnt(m.)»t(nm»*lti»Hnt«i

* eps_set_battery()
*

»define MASK_AND 1
»define MASK_OR 2

int eps_set_battery(int battery, int mode)
(

register BYTE temp, mask;

switch(mode)

(
case BAT_CHARGE_ON:

temp = 0x80; mask = MASK_OR; break;
case BAT_CHARGE_OFF:

temp = -0x80; mask = MASK_AND; break;

case BAT_DISCHARGE_ON:
temp = 0x40; mask = MASK_OR; break;

case BAT_DISCHARGE_OFF:
temp = -0x40; mask = MASK_AND; break;

162

case BAT_ONLINE:
temp = 0x20; mask = MASK_OR; break;

case BAT_OFFLINE:
temp = -0x20; mask = MASK_AND; break;

case BAT_TRICKLE_ON:
temp = 0x10; mask = MASK_OR; break;

case BAT_TRICKLE_OFF:
temp = -0x10; mask = MASK_AND; break;

default:
break;

}

switch(battery)

{
case BAT_A:

if ((mask == MASK_OR) && check_bat (BAT_A, temp))
portO |= temp;

else if (mask == MASK_AND)
portO &= temp;

else

{
dprint("EPS: battery control command error - state not allowed\n"),
return (ERROR) ,-

}
pcb_write(EPS0, 0, portO);
break;

case BAT_B:
if ((mask == MASK_OR) && check_bat(BAT_B, temp))

port6 |= temp;
else if (mask == MASK_AND)

port6 &= temp;
else

{
dprintC'EPS: battery control command error - state not allowed\n");
return(ERROR);

)
pcb_write(EPS1, 2, port6);
break;

default:
break;

}

return(NO_ERROR);

} /* End of eps_set_battery() */

/** + ************************

* check_bat()

* Check to make sure that the new battery control desired to be turned
* on does NOT conflict with other settings that are already on.
*

int checkjbat(int battery, BYTE mask)

(
/* Allowed battery ON setting compared to existing settings */
/* This table is read with the row being the battery ON setting
* that is desired. The first four entries are for battery A, the
* following four are for battery B. The columns represent
* settings already set ON for battery control; again, the first four
* are for battery A, the remaining for for battery B.
* If there is a 1, then the new setting is NOT allowed. A zero indicates
* the new setting is allowed.
*
* B Trickle +

I
* B Online + |

I I
* B Discharge + | |

I I I
* B Charge + | | |

I I I I
* A Trickle + I I I I

I I I I 1
* A Online + | | | | |

I I I I I I
* A Discharge + j ! I I I

163

static WORD

A Charge

(hex)

I I I I I I I
I I I I I I I
vvvvvvvv

80 40 20 10 08 04 02 01

bat_table[8]= {
/* A Charge */0x59,
/* A Discharge */0xB4,
/* A Online */0x40,
/* A Trickle */0xC9,
/* B Charge */0x95,
/* B Discharge */0x4B,
/* B Online */0x04,
/* B Trickle */0x9C};

switch(mask)

(
case 0x10

i = 3
case 0x2 0

i = 2
case 0x40

i = 1
case 0x80

i = 0

/* Trickle */
break;
/* Online */
break;
/* Discharge */
break,-
/* Charge */
break;

} /* End of SWITCH */

if (battery == BAT_B)
i += 4;

/* i is the index into the table */
/* The table ANDed with the current information regarding which battery
* switches are set (ON) are used to see if the new ON request is
* allowed.
*/

if (bat_table[i] & eps_get_battery())
return (FALSE) ; /* not allowed */

else
return(TRUE);

} /* End of check_bat() */

/** + * + + *,Hm + 1Hmr,t,t,m

* ep s_re s e t_wdog()
*
* Toggle the EPS Watch Dog timer so that the EPS will not reset the current
* active System Controller. This is done using Port 4 of the EPS.

void eps_reset_wdog (void)

{
WORD i;

*******/

pcb_write(EPSl, 0, 1) ;

for (i = 0; i < OxlFFF; i++)

pcb_write(EPSl, 0, 0);

} /* End of eps_reset_wdog() */

End of eps.h, eps.c

164

gen_apis.h, genapis.c

+

* GEN_APIS.H
*
* Include file for general functions.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
*
* Revision History:
* =================
* Date Who What
* + +
* 5 Sept 1996 Jah Creation

#ifdef GEN_APIS
WORDcrc_calc (WORD crc, BYTE data);
WORD check_crc (void *ptr, int size);
WORDdisable_ints (void) ,-
voidenable_ints (void) ,-
WORDprepare_crc (void *ptr, int size);

#endif

/* prototypes for modules other than msu.c */
#ifndef GEN_APIS

extern WORD crc_calc (WORD crc, BYTE data);
extern WORD check_crc(void *ptr, int size);
extern WORD disable_ints(void);
extern void enable_ints (void) ,-
extern WORD prepare_crc(void *ptr, int size);

extern const WORDcrc table [] ;

#endif

/♦♦♦♦a**
*
* GEN_APIS.C

* General functions available to .c files..
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
*
* Date Who What
* + +
* 21 Oct 1996 Jah Creation
*

#include "gen_defs.h"

«define GEN_AP1S
(♦include "gen_apis.h"

#undef GEN APIS

/* CRC lookup table for all 256 CRC combinations from an 8-bit value */
#define CRC_TABLE_LEN 256
static const WORD crc_table [CRC_TABLE_LEN] =

{
0x0000, 0x1189, 0x2312, 0X329B, 0x4624, 0X57AD, 0x6536, 0x74BF,
0x8C48, 0X9DC1, 0xAF5A, 0xBED3, 0xCA6C, 0xDBE5, 0xE97E, 0xF8F7,
0x1891, 0x0918, 0x3B83, OX2A0A, 0x5EB5, 0X4F3C, 0X7DA7, 0X6C2E,
0X94D9, 0x8550, 0xB7CB, 0XA642, 0xD2FD, 0xC374, OxFlEF, 0xE066,
0x3122, 0X20AB, 0x1230, 0X03B9, 0x7706, 0x668F, 0x5414, 0x459D,
0xBD6A, 0XACE3, 0x9E78, 0X8FF1, 0xFB4E, 0xEAC7, 0xD85C, 0xC9D5,

165

0X29B3,
0xA5FB,
0x6244,
OxEEOC,
0X7AD5,
0XF69D,
0x5366,
0xDF2E,
0X4BF7,
0xC7BF,
0xC488,
OX48C0,
0XDC19,
0x5051,
0xF5AA,
0X79E2,
0XED3B,
0x6173,
0XA6CC,
0X2A84,
0xBE5D,
0x3215,
0X97EE,
0X1BA6,
0X8F7F,
0x0337,

0X383A
0XB472
0x7 3 CD
0XFF85
0X6B5C
0XE714
0X42EF
0xCEA7
0X5A7E
0xD636
0XD501
0x5949
0XCD90
0x41D8
0XE423
0x686B
0XFCB2
0X70FA
0xB745
0X3B0D,
0XAFD4
0X239C
0x8667
0x0A2F
0X9EF6
0X12BE

OxOAAl
0x86E9
0x4156
OxCDIE
0X59C7
0XD58F
0x7074
0XFC3C
0X68ES
0xE4AD
0xE79A
0X6BD2
OxFFOB
0x7343
0XD6B8
0X5AF0
0XCE2 9
0x4261
0X85DE
0x0996
0X9D4F
0x1107
0XB4FC
0x38B4
0XAC6D
0x2025

0xlB28,
0x9760,
0x5ODF,
0xDC97,
0x484E,
0XC406,
0x61FD,
0XEDB5,
0X796C,
0XF524,
0xF613,
0X7A5B,
0XEE82,
0X62CA,
0XC731,
0X4B79,
OxDFAO,
0X53E8,
0x9457,
0X181F,
0X8CC6,
OxOOSE,
0xA575,
0X293D,
0XBDE4,
0x31AC,

0x6F97
OxE3DF
0x246 0
0xAB28
0x3CFl
0XB0B9
0x1542
0X990A,
0x0DD3
0X819B
0X82AC
OxOEE4
0X9A3D
0x1675
0XB38E
0x3FC6
OxABlF
0x2757
0xE0E8
0X6CA0
0XF879
0x7431
OxDICA
0X5D82
0XC95B
0x4513

0X7E1E
0XF256
0X35E9
0XB9A1
0X2D78
0XA13 0
0X04CB
0x8883
0X1C5A
0x9012
0x9325
0X1F6D
0X8BB4
0X07FC
0XA207
0X2E4F
0XBA96
0X36DE
0XF161
0X7D29
0XE9F0
0X65B8
0XC043
0X4C0B
0XD8D2
0X549A

0x4 C8 5
OxCOCD
0x0772
0x8B3A
0xlFE3
0X93AB
0x3650
0XBA18
0X2EC1
0XA289
OxAlBE
0X2DF6
0XB92F
0x3567
0X909C
Oxl CD4
0X880D
0x0445
0XC3FA,
0X4FB2
0xDB6B
0x5723
0xF2D8
0X7E90
0XEA4 9
0x6601

OX5D0C,
0XD144,
Oxl6FB,
0X9AB3,
0X0E6A,
0x8222,
0x27D9,
0XAB91,
0x3 F4 8,
0XB300,
0XB037,
0x3C7F,
0xA8A6,
0x24EE,
0x8115,
0x0D5D,
0x9984,
0X15CC,
0XD273,
0X5E3B,
0XCAE2 ,
0x4 6 AA,
0XE351,
0x6F19,
OxFBCO,
0x7788

static WORD ints_disabled = FALSE;

* WORDcrc_calc (WORD crc, BYTE data)
*
* Takes a CRC and a new data byte and computes a new CRC.
*

WORDcrc_calc (WORD crc, BYTE data)

{
return((crc » 8) A crc_table [data * (crc & OxFF)]) ;

} /* End of crc_calc() */

*
* WORDcheck_crc (void *ptr, int size)
*
* Check an arbitrary lengthed buffer with its CRC. This function assumes
* that the buffer has the CRC appended to the data. The CRC is returned.

»♦■fr***

WORDcheck_crc (void *ptr, int size)

{
int i ;
WORD crc ;
BYTE * p = (BYTE *)ptr;

t*********/

for (i = 0, crc = 0; i < size; i++)
crc = crc_calc(crc, *p++);

return(crc);

} /* End of prep_crc() */

*
* WORDprepare_crc(void *data, int size)
*
* Prepare an arbitrary lengthed buffer with its CRC by calculating the CRC
* and then appending it to the end of the buffer. This function assumes
* that the buffer is prepared with a length of 2 greater than the data.
* The high-byte of the CRC is written first, the low-byte follows. The CRC
* is returned.
*

WORDprepare_crc (void *ptr, int size)

166

int 1;

WORDcrC;
BYTE*p = (BYTE *)ptr;

for (i = 0, crc = 0; i < size; i++)
crc = crc_calc(crc, *p+ +);

*p++ = (BYTE) ((crc 6. OxFFOO) >> 8);
*p = (BYTE)(crc & OxOOFF);

return(crc);

} /* End of prep_crc() */

/******* + ************************ + ** + * + ** + ********* + ******* + ******* + + *** + * + ***

* WORDdisable_ints()
*
* Disable interrupts (if they are not already disabled) . And set the
* ints_disabled flag to TRUE, indicating that interrupts are no longer
* enabled. Return the flag which is used to control wether or not interrupts
* should be re-enabled.
*

WORDdisable_ints (void)
f

if (!ints_disabled)
{

_disable() ;
ints_disabled = TRUE;
return(ints_disabled);

}

else
return (FALSE) ;

} /* End of disable_ints{) */

* void enable_ints()

* Enables interrupts and marks the ints_disabled flag accordingly.

****#**********+**************•*•********************

voidenable_ints (void)

{
_enable();
ints_disabled = FALSE;

} /* End of enable_ints() */

End of gen_apis.h, genapis.c

167

gen_defs.h
/***•****************************+

+

* GEN_DEFS.H

* Include file for general definitions used by most .h and .c files..

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jan)
*
* Revision History:

Date Who What

* 8 Sept 1995 Jah Creation

typedef unsigned char BYTE;
typedef unsigned int WORD;
typedef unsigned long int DWORD;

#define FALSE 0
#define TRUE 1
#define ERROR 0
«define NO ERROR 1
«define OFF 0
«define ON 1
«define RESET 0
«define SET 1

«define NULL •\0'

/* Character definitions for ASCII */
«define NULL_CHAR (char)0x00
«define BELL (char)0x07
«define BACK_SPACE (char)0x08
«define LF (char)OxOA
«define CR (char)OxOD
«define ESC (char)OxlB
«define CTRL_Q (char)0x11
«define CTRL_R (char)0x12
«define CTRL_S (char)0x13
«define CTRL_V (char)0x16
«define CTRL_W (char)0x17
«define CTRL_X (char)0x18
«define CTRL_Y (char)0x19
«define CTRL_Z (char)OxlA
«define HOME (char)OxlE
«define NEW_LINE (char)OxlF

«define MAX UCHAR (unsigned char)
«define MAX CHAR (signed char)
«define MAX UINT (unsigned int)
«define MAX INT (int)
«define MAX_DLONG (unsigned long int)
«define MAX_LONG (long int) 21

/* DMA Registers */
«define D0SRCH 0XFFC2
«define D0SRCL OxFFCO
«define D0DSTH 0xFFC6
«define D0DSTL 0XFFC4
«define DO CON OxFFCA
«define D0TC 0XFFC8
«define D1SRCH 0xFFD2
«define D1SRCL OxFFDO
«define D1DSTH 0XFFD6
«define D1DSTL 0XFFD4
«define D1CON OxFFDA

255
127

65535
32767

4294967295
2147483647

«define D1TC 0xFFD8

168

/* Operating Frequencies */
#define CRYSTAL_FREQUENCY14.7456E+6
/* Peripheral Clock: half the frequency of the crystal frequency */
«define PCLK ((double) (1.0/ (CRYSTAL_FREQÜENCY/2 . 0)))

End of gen_defs.h

169

int.h, inte
/***

* INT.H
*
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:

* Date Who What
* + +

*
**

#define INT_EOI 0xFF22
#define INT REQ REG 0xFF2E

/***
*
* INT.C
*
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* ___________________
* Date Who What
* + +
*
**/

#include "gen_defs.h"

#define INT_C
#include "int.h"
#undef INT C

End of inth, intc

170

modern.h, modem.c
/***

* MODEM.H
*
* MODEM
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
*
* Date Who What
* + +
* 17 July 1996 Jah Creation
*
**

typedef struct

{
BYTE address,•
BYTE data;

} palO0_instr_struct;

#ifdef MODEM
#define PA100_BASE 0x200
#define MODEM_CTRL_PORT 0x180

#define MODEM_SETUP 0x00/* Encode=OFF,DDS=OFF,Spread=OFF,Reset=OFF */
#define MODEM_RESET 0x01/* Encode=OFF,DDS=OFF,Spread=OFF,Reset=ON */
#define MODEM_CLEAR OxOC/* Encode=ON,DDS=ON,Spread=OFF,Reset=OFF */
#define MODEM_SPREM> OxOE/* Encode=ON,DDS=ON,Spread=ON,Reset=OFF */

voidmodem_clear (void) ;
voidmodem_of f (void) ;
voidmodem_on(void) ;
voidmodem_spread(void) ;

voidpal00_read_regs (void) ;
voidpa!00_wrlte_table(palOO_instr_struct tablet]) ;

#endif

#ifndef MODEM

extern void modem_clear (void) ;
extern void modem_of f (void) ,-
extern void raodem_on (void) ;
extern void modem_spread(void);

extern void pal00_read_regs(void) ;
extern void pal00_write_table (pal00_instr_struct table!]);

#endif

171

/******************************
*
* MODEM.C

**

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)

* Revision History:
* =================
* Date Who What

17 July 1996 Jah Creation

** ********/

#include "gen_defs.h"

#define
#include
#undef

MODEM
"modem, h"
MODEM

#include "pcb.h"

static palOO_instr_struct pal00_init[]

0x01, 0xC6}, /*
0x04, 0xC6}, /*
0x02, 0x00}, /*
0x03, 0xE2}, /*
0x05, 0x00}, /*
0x06, 0xE2}, /*
* AGC V
0x07, 0x22}, /*
0x08, 0x38}, /*
0x09, 0x00}, /*
OxOA, 0xF5), /*
OxOA, OxFO), /*
* PN Generators */
0x19, 0x00), /*
OxlA, 0x82}, /*
0x17, 0x00}, /*
0x18, OxBE}, /*
OxlD, 0x00}, /*
OxlE, 0x82}, /*
OxlB, 0x00}, /*
OxlC, OxBE}, /*
OxlF, 0x77}, /*
0x20, 0x05}, /*

ALPHA_I FIR filter weights */ .
ALPHA_Q */
IBI_LO DC removal filter, I channel bias */
IBI_HI */
QBIJLO DC removal filter, Q channel bias */
QBI_HI */

AGC_L AGC reference Level */
AGC_G AGC proportional & saturated gains */
AGC_I AGC initial value */
GP1_CTL Init. AGC, apply DC removal filter initial bias */
GP1_CTL Let AGC free run, remove DC filter initial bias */

I_PNT_LO I PN generator taps */
I_PNT_HI */
I_PNl_LO I PN generator initial register setting */
I_PNI_HI */
Q_PNT_LO Q PN generator taps */
Q_PNT_HI */
Q_PNI_LO Q PN generator initial register setting */
Q_PNI_HI */
PN_CNTL0 */
PN CNTL1 */

* PN Detector
0x22, 0x00},

'/
/* PNSEL PN detection code select (I or Q code) */

General Controls */
0x28,
0x29,
0x2A,
0x2B,
0x2C,

0x39},
0x01},
0x00},
0x00},
OxEA},

/* Phase Loop */
0x39,
0X3A,
0x3B,
0x3C,

0x00},
0x00} ,
0x00),
0x00},

* Time Loop */
0x14, OxFA},
0x33,
OxOC,
OxOD,
OxOE,
OxOF,
0x10,
0x11,
0x12,
0x15,
0x15,
0x15,
0x2D,
0x2E,
0x2 F,
0x30,
0x31,
0x32,

0x09},
0x00},
0x00},
0x00},
0x00},
0x00),
0x00},
0x00},
0x02),
0x42},
0x02),
0x00},
0x00),
0x00),
0x80),
0x00},
0x80),

/*
/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

CNTL_B2 Enable time/level/phase strobes, set polarities */
CNTL_B3 unfreeze, enable output data clock */
EXT_IN External data input controls */
GP_3 Clear i/o muxing */
CNTL_AS Select symbol strobes used by accumulators */

PH_FREQ_0 Phase accumulator initial value */
PH_FREQ_1 */
PH_FREQ_2 */
PH_FREQ 3 */

TIM_CTL2
TM_WIDTH
SC_LO
SC_HI
CHIP
I_SYM_HI
I_SYM_LO
Q_SYM_HI
Q_SYM_LO '
TIM_CTL3
TIM_CTL3
TIM_CTL3
TM_FREQ_0
TM_FREQ_1
TM_FREQ_2
TM_FREQ_3
TM_GAIN_1
TM GAIN 2

Set subchip and chip counter sync, source */
Freq Synth Ctrl Word width = 32-TM_WIDTH bits */
Samples per subchip = 0 */
Clear mode for initialization */
Subchips per chip = 0, clear mode for init */
I channel: chips per symbol = 0 */
Clear mode for initialization */
Q channel: chips per symbol = 0 */
/
Toggle SYS_INIT, set I strobe via I, Q via Q */
Set I & Q PN to (2AN)-1 or 2*N */
Set I strobe from I channel, Q via Q channel */
Rs, sample clock = 10 MHz for initialization */
*/
*/
*/
Open Timing Loop */
Initialize Timing Loop */

172

};

{0x32, 0x00), /* TM_GAIN_2 Stop initializing loop */

{OxFF, OxFF} /* End */

static palOO_instr_struct palO0_clear[]
{

{OxOB, 0x00),
/* PN GENERATORS
0x21, 0x20},
0x26, 0x24),
0x27, 0x3B),

/* PA_SC
*/
/* cc
/* CNTL B0
/* CNTL Bl

PREACCUMULATOR SCALING CONSTANT */

FREQ. DISC. ON,SET INT PN, I&Q PN ON/OFF */
QUADRAPHASE DATA, SEL LEVEL $ TIME CHANNEL */
ENABLE DATA REMOVAL, SELECT PHASE CHANNEL */

TIME ERROR DETECTOR PROCESSOR */
0x23, 0xS5}, /* I_Q_TIME
* PHASE LEVEL PROCESSOR */
0x24,
0x25,

0x55},
0x55},

* TIME LOOP */
OxOC,
OxOD,
OxOE,
OxOF,
0x10,
Oxll,
0x12,
0x13,
0x16,
0x13,
0x2D,
0x2E,
0x2F,
0x3 0,
0x31,
0x32,

0x3F),
0x00},
0x00},
0x00},
0x01},
0x00),
0x01},
0x00},
0x00},
0x00},
0x00},
0x00},
0x00),
0x80),
0x58},
OxDl),

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

Q_LEVEL
Q_PHASE

SC_LO
SC_HI
CHIP
I_SYM_HI
I_SYM_LO
Q_SYM_HI
Q_SYM_LO
TIM CTL1

/* TIM_CTL4
/* TIM_CTL1
/* TM_FREQ_0

TM_FREQ_1
TM_FREQ_2
TM_FREQ_3
TM GAIN 1

* PN DETECTOR
0x35, 0x00},
0x36, 0x00},
0x37, 0x00},
0x38, OxFF},
* PHASE LOOP */
0x3D, 0x7F},
0x3E, 0xD4},
* TIME LOOP */
0x15, 0x42),
0x15, 0x02),
* PN DETECTOR *
0x34, 0x00},
0x34, 0x04},
0x34, 0x00},
* TIME LOOP */

/*
/*
/*
/*
/* TM_GAIN_2

/

SET SCALE FACTORS FOR TIMING ACCUMULATOR */

SET SCALE FACTORS FOR LEVEL ACCUMULATOR */
SET SCALE FACTORS FOR PHASE ACCUMULATOR */

Samples per subchip = 0 */
clear mode for initialization */
Subchips per chip = 0, clear mode for init */
I channel: chips per symbol = 0 */
clear mode for initialization */
Q channel: chips per symbol = 0 */

/
NO CODE SLIPPING, CLEAR MODE */
CLEAR MODE, DISABLE */
NO CODE SLIPPING */_
Rs, sample clock = START AT 10 MHz */

*/
*/
*/
Open Loop, ARM TO CLOSE ON PN DET, SET Kl */
LOAD FILTER WITH INITIAL VALUE, SET GAIN K2 */

PNCD_BIAS PN DETECTOR BIAS LEVEL */
PNCD_INITLO PN DETECTOR ACCUMULATOR */
PNCD_INITHI */
PNCD TIM PN DETECTOR CORRELATION TIMER

PH_GAIN_1
PH GAIN 2

CLOSE THE LOOP, MAKE LOOP FIRST ORDER */
LOAD ACCUM WITH INITIAL VALUE, SET GAIN K2 */

/* SYS_INIT */
/* SYS INIT */

/
/
/
/* PNCD CTL */

PNCD_CTL
PNCD CTL

PN DETECTOR ACQ/TRACK CONTROLLER */
RESTART TRACK SEQUENCE */

0x32, 0x51}, /* TM_GAIN_2 Stop LOADING TIME LOOP FILTER WITH INIT VALUE */
* FREQUENCY PULLIN/TRACK SETUP TABLE
* PN GENERATORS */
0x21, 0x20}, /* CC
* PHASE LEVEL PROCESSOR */

*/

FREQ. DISC. ON,SET INT PN, IfcQ PN ON/OFF */

0x26, 0x28}, /* CNTL B0
0x27, 0x3B), /* CNTL Bl
0x3D, 0x7F}, /* PH GAIN 1
0x3E, 0x54}, /* PH GAIN 2

QUADRAPHASE DATA, SELECT LEVEL $ TIME CHANNEL
ENABLE DATA REMOVAL, SELECT PHASE CHANNEL */
CLOSE THE LOOP, MAKE LOOP FIRST ORDER */
LOAD ACCUM WITH INITIAL VALUE, SET GAIN K2 */

TIME ERROR DETECTOR PROCESSOR */
0x23, 0x55), /* I_Q_TIME
• PHASE LEVEL PROCESSOR */
0x24, 0x55), /* I_Q_LEVEL
0x25, 0x55), /* I_Q_PHASE
• COHERENT TRACK SETUP TABLE
0x3D, 0x54), /* PH_GAIN_1
0x3E, 0x4E), /* PH_GAIN_2
• PHASE LEVEL PROCESSOR */
0x26, 0x00}, /* CNTL_B0
0x27, 0x3D}, /* CNTL_B1
* PN GENERATORS */
0x21, 0x00}, /* CC FREQ. DISC. ON,SET INT PN, I&Q PN ON/OFF */
* TIME ERROR DETECTOR PROCESSOR */
0x23, 0x55), /* I_Q_TIME SET SCALE FACTORS FOR TIMING ACCUMULATOR */
* PHASE LEVEL PROCESSOR */
0x24, 0x55), /* I_Q_LEVEL SET SCALE FACTORS FOR LEVEL ACCUMULATOR */
0x25, 0x55}, /* I_Q_PHASE SET SCALE FACTORS FOR PHASE ACCUMULATOR */

{OxFF, OxFF} /* End */

SET SCALE FACTORS FOR TIMING ACCUMULATOR */

SET SCALE FACTORS FOR LEVEL ACCUMULATOR */
SET SCALE FACTORS FOR PHASE ACCUMULATOR */

*/
CLOSE THE LOOP, MAKE LOOP FIRST ORDER */
LOAD ACCUM WITH INITIAL VALUE, SET GAIN K2 */

QUADRAPHASE DATA, SELECT LEVEL $ TIME CHANNEL
ENABLE DATA REMOVAL, SELECT PHASE CHANNEL */

173

* modem_clear()
*
**

voidmodem_clear (void)
{

modem_on () ,-

/* outp(MODEM_CTRL_PORT, MODEM_SETUP) ; */ /* done by modem_on () */

palOO_write_table(pal00_init);

OUtp(MODEM_CTRL_PORT, MODEM_CLEAR);

palO0_write_table(palOO_clear);

} /* End of modem_clear() */

*
* modem_off()
*

voidmodem_of f (void)

{
pcb_portc(0, ON); /* Turn this control bit ON to turn OFF modem */

} /* End of modem_off() */

Z***
*
* modem_on{)
*
**************************************-k*****************************1eiri[irilitilit/

vo i d modem_on (vo i d)

{
WORDx;

pcb_portc(0, OFF); /* Turn this control bit OFF to turn ON modem */

for (x = 0; x < OxFFFF; x++)

outp(MODEM_CTRL_PORT, MODEM_RESET);

for (x = 0; x < OxFFFF; X++)

outp(MODEM_CTRL_PORT, MODEM_SETUP);

} /* End of modem_on() */

* modem_spread()
*

voidmodem_spread (void)

{
/* normal spread, fixed encode, on DDS on*/
OUtp(MODEM_CTRL_PORT, MODEM_SETUP);

pal00_write_table(pal00_init);

outp(MODEM_CTRL_PORT, MODEM_SPREAD) ;

} /* End of modem_spread() */

*
* pal00_read_regs0
*

174

void palOO_read_regs(void)

{
unsigned int addr, data, x;
unsigned int data_tab [0x20] ,-
unsigned int b;
unsigned long a;
double f;

/* Freeze */
outp(PA100_BASE + (0x29)<<l, 0x81);
for (x = 1; X <= 0x14; X++)

data_tab[x] = inp (PA100_BASE + (xc<l)) ,
/* Unfreeze */
outp(PA100_BASE + (0x29)<<2, 0x01);

for (X = 1; X <= 0x14; X++)

f
data = data_tab[x];

switch(x)

{
case 1:

dprintC'01: AGC Status = %02Xh\n" , data);
break;

case 2:
b = data;
break;

case 3:
b = (b<<8) + data;
dprint("02, 03: I Prefilter = %04Xh\n", b) ;
break;

case 4:
b = data;
break;

case 5:
b = (b<<8) + data;
dprint("04, 05: Q Prefilter = %04Xh\nn, b) ;
break;

case 6:
a = data;
break;

case 7:
a = (((unsigned long)data) << 8) + a;
break;

case 8:
a = (((unsigned longjdata) << 16) + a;
break;

case 9:
a = (((unsigned longjdata) << 24) + a;
f = ((double)a)/((double)214.7483S5E6) ,•
dprint("06 - 09 Time Frequency Command = %lXh\n", a) ;
dprintf" = %lf MHz\n", f);
break;

case OxA:
a = data;
break;

case OxB:
a = (((unsigned longjdata) << 8) + a;
break;

case OxC:
a = (((unsigned longjdata) << 16) + a;
break;

case OxD:
a = (((unsigned longjdata) << 24) + a;
f = ((double)a)/((double)214.748365E6);
dprintCOA - 0D Phase Frequency Command = %lXh\n", a) ;
dprint(" = %lf MHz\n" , f) ;
break;

case OxE:

175

break;

case OxF:
break;

case OxlO:
b = data;
break;

case Oxll:
b = (data << 8) + b;
dprintC'10, 11: PN Correlation Detector = %04Xh, %u\n", b, b) ,
break;

case 0x12 :
b = data;
break;

case 0x13:
b = (data << 8) + b;
dprint("12, 13: PN Correlation Slip
break;

= %04Xh, %u\n", b, b);

case 0x14:
dprint("14: PN Generator Status
if (data & 0x01)

dprintC IPN_EP_TOG = l\n");
else

dprintC IPN_EP_TOG = 0\n");

if (data & 0x02)
dprintC QPN_EP_TOG = l\n");

else
dprintC QPN_EP_TOG = 0\n");

break;

%02Xh\n", data);

/* End of pal00_read_regs0 */

********************* /***

* pal00_write_table()
*

voidpal00_write_table (pal00_instr_struct table t])

for (x = 0; table[x].address != (BYTE)OxFF; x++)
{

if (table[x].address == 0)
outp (MODEM_CTRL_PORT, (WORD) table [x] . data) ;

else

outp(PA100_BASE + (WORD) (table [x] .address<<l) , (WORD) table [x] .data) ,

/* End of pal00_write_table() */

End of modem.h, modem.c

176

msu.h, msu.c

*
* MSÜ.H
*
* Include file for Mass Storage Units (MSU) software interface.
*
* Petite Amateur Navy Satellite (PANSAT) .
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*

* Revision History:

* Date Who What
* + +
* 5 Sept 1996 Jah Creation
*

#ifdef MSU
#define NUM_FLASH_DEVICES 4

#define FLASH_SECTOR_SIZE ((DWORD) 0X4000L) /* 16 kbytes */
#define FLASH_SECTOR_END_ADDRESS ((DWORD) (FLASH_SECTOR_SIZE - 1))
#define FLASH_SECTORS_PER_DEVICE 8
«define FLASH_SECTOR_MAX_PER_DEVICE (FLASH_DEVICE_SECTORS - 1)
«define FLASH_DEVICE_SIZE (FLASH_SECTORS_PER_DEVICE * FLASH_SECTOR_SIZE)

«define FLASH_SIZE (NUM_FLASH_DEVICES * FLASH_DEVICE_SIZE)
«define FLASH_END_ADDRESS (FLASH_SIZE - 1)
«define FLASH_SECTORS (NUM_FLASH_DEVICES * FLASH_SECTORS_PER_DEVICE)
«define FLASH_SECTOR_MAX (FLASH_SECTORS - 1)

«define ERASE_TIME_LIMIT ((DWORD) 0X0003FFFFL)
«define WRITE_TIME_LIMIT OxOFFF

/* Masks to signify the search method that found the first empty record */
«define NO_TLM_WRAP 0x0
«define TLM_WRAP 0x8000
«define NO_TLM_FIND OxFFFF
«define NO_REC_NUM OxFFFF

voidmsu_init (int device);
void msu_on(int device);
void msu__off(int device);

int msu_flash_erase (int device);
int msu_f lash_erase_sector (int device, int sector);
BYTEmsu_flash_readl(int device, DWORD addr);
voidmsu_flash_read(int device, DWORD addr, BYTE *buf, int count);
int msu_flash_writel(int device, DWORD addr, BYTE data);
int msu_f lash_write (int device, DWORD addr, BYTE *data, int count);
voidmsu_set_f addr (int device, DWORD addr);

int msu_calc_f irst_rec (int rec_num);
int msu_check_flash_tlm(void) ;
WORDmsu_flash_search(int device) ;

int msu_get_tlm(tlm_record_struct *r_tlm, int rec_num) ;
voidmsu_save_tlm(tlm_record_struct *r_tlm) ,-

BYTEmsu_sram_readl (int device, DWORD addr);
voidmsu_sram_read(int device, DWORD addr, BYTE *buf, int count);
int msu_sram_writel (int device, DWORD addr, BYTE data);
int msu_sram_write (int device, DWORD addr, BYTE »data, int count),
voidmsu_set_saddr (int device, DWORD addr);

voidmsu_f test (int device);
voidmsu_stest (int device) ;

«endif

/* prototypes for modules other than msu.c */
«ifndef MSU

extern void msu init(int device);

177

extern void
extern void

extern int
extern int
extern BYTE
extern void
extern int
extern int
extern void

extern int
extern int
extern void

extern BYTE
extern void
extern int
extern int
extern void

extern void
extern void

#endif

msu_on(int device);
msu_off(int device);

msu_flash_erase(int device) ,-
msu_flash_erase_sector(int device, int sector);
msu_f lash_readl (int device, DWORD addr);
msu_flash_read(int device, DWORD addr, BYTE *buf, int count);
msu_flash_writel(int device, DWORD addr, BYTE data);
msu_flash_write(int device, DWORD addr, BYTE *data, int count),
msu_set_faddr(int device, DWORD addr);

msu_check_f lash_tlm(void) ;
msu_get_tlm(tlm_record_struct *r_tlm, int rec_num) ;
msu_save_tlm(tlm_record_struct *r_tlm) ;

msu_sram_readl(int device, DWORD addr);
msu_sram_read(int device, DWORD addr, BYTE *buf, int count);
msu_sram_writel(int device, DWORD addr, BYTE data);
msu_sram_write(int device, DWORD addr, BYTE *data, int count);
msu_set_saddr(int device, DWORD addr);

msu_ftest(int device);
msu_stest(int device);

/***
*
* MSÜ.C
*
* Interface for the Mass Storage Units (MSU).
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* The Mass Storage Units have 4 Mbytes of SRAM and 1/2 Mbyte of Flash.
* The Flash devices are the Am29F010.
*
*
* Revision History:
* =================
* Date Who What

5 Sept 1996
22 April 1997

Jah
Jah

Creation
Support for record keeping.

**

#include "gen de

#include "bcm.h"
#include "tlm.h"

#define MSU
#include "msu.h"
#undef MSU

#include "dcs.h"
#include "eps. h"
#include "pcb.h"

/* Flash storage telemtry record pointers */
WORDmsu_tlm_rec_num = 0; /* current location to record to */
WORDmsu_tlm_first_rec_num =0; /* location of oldest record */
WORDmsu_tlm_last_rec_num = NO_REC_NUM; /* location of newest record */

«define LAST_TLM_REC_NUM ((FLASH_DEVICE_SIZE/sizeof (tlm_record_struct)) - 1)

/***
*
* void msu_init(int device)
*
* Initializes a MSU.
*

I

void msu_init(int device)
{

pcb_write(device, 3, 0x80);

178

pcb_write(device, 2, 0x4 8); /* Point to landing zone for low power */

} /* End of msu_init() */

/***
*
* void msu__on(int device)
*
* Turns ON and initializes a MSU.

void msu_on(int device)

{
WORD i;

if {device == MSAO)
eps_set_power(PWR_MSA, ON);

else
eps_set_power (PWR_MSB, ON) ;

for (i = 0; i < OxlFFF; i++) /* pause for power ON */

msu_init(device);

} /* End of msu_on() */

/***

* void msu_off(int device)
*
* Turns OFF a MSU.
*
**/

void msu_off(int device)

{
if (device == MSAO)

eps_set_power(PWR_MSA, OFF);
else

ep s_s e t_powe r(PWR_MSB, OFF);

} /* End of msu_off() */

/**********************+**

*
* WORDmsu_f lash_codes (int device)
*
* Examines the four Flash devices for a MSU to see if the manufacturer
* code (0x01 = AMD) and the device type (0x20 = 29F010) are readable from
* each.
*
**/

WORDmsu_f lash__codes (int device)
{

register int i;
BYTE data;
register WORD flag = 0;

for (i = 0; i < 4; i++)

{
msu_set_faddr (device, ((i*0x00020000L) + 0x00005555L)) ,-
pcb_write(device+l, 0, ((BYTE) OxAA)) ;
msu_set_faddr (device, ((i*Ox00020000L) + Ox00002AAAL)) ;
pcb_write(device+l, 0, ((BYTE) 0x55)) ;
msu_set_faddr(device, ((i*0x00020000L) + 0x00005555L));
pcb_write(device+1, 0, ((BYTE)0x90)) ;

msu_set_faddr(device, (i*Ox00020000L)) ;
data = pcb_read(device+1, 0) ;

if (data == 0x01)
{

msu_set_faddr(device, ((i*Ox00020000L) + 1L));
data = pcb_read(device+1, 0) ;

if (data == 0x20)
flag |= (l«i) ;

179

else

{
flag |= 0x80;
break;

}

else

flag |= 0x8 0;
break ,•

/* perform read/reset */
msu_set_faddr(device, ((i*0x00020000L) + 0x00005555L)) ;
pcb_write (device+1, 0, ((BYTE) OxAA)) ,-
msu_set_faddr(device, ((i*Ox00020000L) + 0x00002AAAL)) ;
pcb_write(device+1, 0, ((BYTE)0x55));
msu_set_faddr(device, ((i*Ox00020000L) + 0x00005555L)) ;
pcb_write(device+1, 0, ((BYTE)OxFO));

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

return(flag);

} /* End of msu_flash_codes() */

/»iH)inmii*iitttmnt»m».n»Hi»mut*t.imttt*i»(tnint»mtn«ni
*
* int msu_flash_erase(int device)

* Erases all Flash devices within a MSU.
*

int msu_flash_erase(int device)
{

register BYTE fdata;
register int i;
int pass = TRUE;
DWORD x;

for (1 = 0; (i < 4) && pass; i++)

{
msu_set_faddr (device, ((i*Ox00020000L) + 0x00005555L)) ,-
pcb_write (device+1, 0, (BYTE) OxAA) ,-
msu_set_faddr(device, ((i*0x00020000L) + 0x000O2AAAL));
pcb_write(device+1, 0, (BYTE)0x55) ,•
msu_set_faddr(device, ((i*Ox00020000L) + 0x00005555L));
pcb_write(device+1, 0, (BYTE)0x80) ;
msu_set_faddr (device, ((i*0x00020000L) + 0x00005555L)) ,•
pcb_write (device+1, 0, (BYTE) OxAA) ,•
msu_set_faddr(device, ((i*0x000200O0L) + 0x00002AAAL));
pcb_write(device+1, 0, (BYTE)0x55);
msu_set_faddr(device, ((i*0x00020000L) + 0x00005555L));
pcb_write(device+1, 0, (BYTE)0x10);

fdata = pcb_read (device+1, 0) ,-
x = 0;

while (((fdata & 0x80) != 0x80) && (x < ERASE TIME LIMIT))
{ " ~

if (fdata & 0x20)

{
fdata = pcb_read(device+1, 0) ,-
if ((fdata & 0x80) == 0x80)

break ,-

else

{
pass = FALSE;
break;

}
}

fdata = pcb_read(device+1, 0);
X++;

} /* End of WHILE */

180

if (x == ERASE_TIME_LIMIT)
pass = FALSE;

} /* End Of FOR */

pcb_write(device, 2, 0x48); /* Point to landing zone for low power */

if (x == ERASE_TIME_LIMIT)
return (OxCO | i) ,-

else if (Ipass)
return(0x80 | i) ; /* 0x80 = Error flag, i = device which failed */

else
return(pass);

} /* End of msu_flash_erase() */

* int msu_flash_writel (int device, DWORD addr, BYTE data)
*
* Write one data byte to a flash address.
*

int msu_flash_writel (int device, DWORD addr, BYTE data)

{
register BYTE fdata;
int pass = TRUE;
register WORD x;

msu_set_f addr (device, (addr&OxO007OO0OL) + 0x5555) ,-
pcb_write(device+l, 0, (BYTE)OxAA);
msu_set_f addr (device, (addr&OxO0O70000L) + 0x2AAA) ;
pcb_write(device+l, 0, (BYTE)0x55);
msu_set_f addr (device, (addr&OxO0070000L) + 0x5555);
pcb_write(device+l, 0, (BYTE)OxAO);

msu_set_f addr (device, addr) ;
pcb_write(device+1, 0, data);

fdata = pcb_read(device+1, 0);
x = 0;
while (((fdata & 0x80) != (data & 0x80)) && (x < WRITE_TIME_LIMIT))

{
if (fdata & 0x20)

{
fdata « pcb_read(device+1, 0) ,-
if ((fdata & 0x80) == (data & 0x80))

break;

else

pass - FALSE;
break ,-

fdata « pcb_read(device+1, 0) ,-
X++;

pcb_write(device, I, 0x46); /* Point to landing zone for low power */

if (x == WRITE T;MF_L:V:T»
pass « FAl*St.

return(pass),

} /* End of msu_f lash_wntel O */

*
* int msu_flash_write(int device, DWORD addr, BYTE *data, int count)

* Write data to a flash address(es).

+*****************************+********+***********+**^

int msu_flash_write(int device, DWORD addr, BYTE *data, int count)

181

{
register BYTE fdata;
int pass = TRUE;
register WORD x;

x = 0;
while ((count--) && (x < WRITEJTIME LIMIT))
{

msu_set_faddr(device, (addr&Ox00070000L) + 0x5555);
pcb_write(device+1, 0, (BYTE)OxAA);
msu_set_faddr(device, (addr&0x00070000L) + 0x2AAA);
pcb_write(device+1, 0, (BYTE)0x55);
msu_set_faddr(device, (addr&Ox00070000L) + 0x5555);
pcb_write(device+1, 0, (BYTE)OxAO);

msu_set_faddr(device, addr);
pcb_write(device+1, 0, *data);

fdata = pcb_read(device+1, 0);
x = 0;
while (((fdata & 0x80) != (*data & 0x80)) && (x < WRITE TIME LIMIT))

{
if (fdata & 0x20)

{
fdata = pcb_read(device+1, 0) ;
if ((fdata & 0x80) == (»data & 0x80))

break;

else

{
pass = FALSE;
break;

fdata = pcb_read(device+1, 0);
x++;

addr++;
data++;

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

if (x == WRITE_TIME_LIMIT)
pass = FALSE;

return(pass);

/* End of msu_flash_write0 */

*
* BYTEmsu_flash_readl (int device, DWORD addr)
*
* Read one data byte from a flash address.
*
**********•**********************+**+************+*+****+****************+**/

BYTEmsu_flash_readl (int device, DWORD addr)

{
register BYTE data;

msu_set_f addr (device, addr) ,-
data = pcb_read(device+1, 0);

pcb_write(device, 2, 0x48); /* Point to landing zone for low power */

return(data);

/* End of msu_flash_readl() */

*
* voidmsu_flash_read(int device, DWORD addr, BYTE *buf, int count)
*
* Read data from a flash address. This routine only increments the address
* on the MSÜ if it has changed; thereby reducing many PCB Writes. The
* overhead to check for a,c,b address roll-over is nothing compared to the

182

* PCB Write.

*** ********************

voidmsu_flash_read(int device, DWORD addr, BYTE *buf, int count)

{
register WORD a, b;
WORD c;

msu_set_faddr(device, addr);
a = (WORD)((addr) & OxOOOOOOFFL);
b = (WORD)(((addr) & OxOOOOFFOOL)>>8);
c = (WORD)((((addr) | 0X00400000L) & OxOOFFOOOOL)>>1S);

while(count--)

(
*buf = pcb_read(device+l, 0) ;
buf++;

/* Now, setup for the next address to write to */
a++;
pcb_write(device, 0, a%0xl00);
if (a > OxFF)

{
a = 0;
b++;
pcb_write(device, 1, b%0xl00);
if (b > OxFF)

{
b = 0;
C + +;

pcb_write(device, 2, c) ;

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

} /* End of msu_flash_read() */

/********** + + **********************•***** + ********************** + ********** + **

* BYTEmsu_sram_readl (int device, DWORD addr)
*
* Read data to a flash address.
*
***************+***********************+****+**********+********+*•********+/

BYTEmsu_srara_readl (int device, DWORD addr)

(
register BYTE data;

msu_set_saddr(device, addr);
data = pcb_read(device+l, 0);

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

return(data);

} /* End of msu_sram_readl0 */

* voidmsu_sram_read(int device, DWORD addr, BYTE *buf, int count)
*
* Read data to a flash address. This routine only increments the address
* on the MSÜ if it has changed; thereby reducing many PCB Writes. The
* overhead to check for a,c,b address roll-over is nothing compared to the
* PCB Write.
*

voidmsu_sram_read(int device, DWORD addr, BYTE *buf, int count)

{
register WORD a, b;
WORD c;

msu_set_saddr(device, addr);

183

a = (WORD)((addr) & OxOOOOOOFFL);
b = (WORD)(((addr) & OxOOOOFFOOL)>>8);
c = (WORD)(((addr) & OxOOFFOOOOL)>>16);

while(count--)

{
*buf = pcb_read(device+l, 0) ;
buf++;

/* Now, setup the next address to write to */
a++;
pcb_write(device, 0, a%0xl00) ;
if (a > OxFF)

{
a = 0;
b++;
pcb_write(device, 1, bVOxlOO);
if (b > OxFF)
{

b = 0;
C + +;

pcb_write (device, 2, c) ,-
}

}

}

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

} /* End of msu_sram_read() */

*
* int msu_sram_writel (int device, DWORD addr, BYTE data)
*
* Write data to a srara address.
*

int msu_sram_writel (int device, DWORD addr, BYTE data)
{

msu_set_saddr(device, addr);
pcb_write(device+1, 0, data);

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

} /* End of msu_srara_writel() */

*
* int msu_sram_write(int device, DWORD addr, BYTE *data, int count)
*
* Write data to a sram address. This routine only increments the address
* on the MSU i£ it has changed; thereby reducing many PCB Writes. The
* overhead to check for a,c,b address roll-over is nothing compared to the
* PCB Write.

**********+*****••••••••••«*•**********************+************************/

int msu_sram_write(int device, DWORD addr, BYTE *data, int count)
{

register WORD a. b,
WORD c;

msu_set_saddr(device, addr);
a = (WORD)((addr) 4 OxOOOOOOFFL);
b = (WORD)(((addr: k OxOOOOFFOOL)>>8);
c = (WORD) (((addr) 4 OxOOFFOOOOL)>>1G) ;

while(count--)

{
pcb_write(device»l, 0, »data);
data++;

/* Now, setup the next address to write to */
a++;
pcb_write(device, 0, a%0xl00);
if (a > OxFF)

{
a = 0;
b++;

184

pcb_write(device, 1, b%0xl00);
if (b > OxFF)

{
b = 0;
c++;
pcb_write(device, 2, c);

}

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

) /* End of msu_sram_write() */

/*** + *** + **********#************* +
*
* voidmsu_f test (int device)
*
* Tests a MSU's Flash devices by writing a pattern to the Flash devices
* and then reading it back.

********************** + ************************* + ****************** + ********/

void msu_f test (int device)
{

DWORD addr;
int i, j;
BYTE block [256] ;
BYTE f block [256] ;
DWORD t ;
extern int icount;

for (i = 0; i < 255; i++)
block[i] = (BYTE)i;

block[255] = OxFE; /* don't use OxFF which is erased value */

t = icount;
msu_flash_write(device, 0, (BYTE *)block, 256);
t = icount - t;
dpr int ("FLASH 256 byte block write time = %ld ticks. \n", t) ;
t = icount;
rasu_flash_read(device, 0, (BYTE *)block, 256);
t = icount - t;
dprint ("FLASH 256 byte block read time - %ld ticks.\n", t) ,-
return ,-

dprint("Writing Flash data (# = 64K)\n");
for (i = 0, addr = 0L; addr <= 0x0007FFFFL; addr += 256)

{
msu_flash_write(device, addr, (BYTE *)block, 256);

if (++i == 256)
(

i = 0;
dprint("#");

dprint("\nReading back Flash data (# = 64K)\n");

for (i = 0, addr = 0L; addr <= 0x0007FFFF; addr += 256)

(
msu_flash_read(device, addr, (BYTE *)fblock, 256);
for (j = 0; j < 256; j++)

{
if (fblocktj] !=block[j])

{
dprint ("Flash read back error at %1X, %X should be %X\n"

(DWORD) (addr+j), fblocktj], block[j]);
return;

}
)
if (++i == 256)

{
i = 0;
dprint ("#");

185

dprint("\nFinished: OK.\n"),-

} /* End of msu_ftest{) */

/***
*
* voidmsu_stest (int device)

* Tests a MSU's SRAM devices by writing a pattern to the SRAM devices
* and then reading it back.

*■****************/ ***

voidmsu_stest (int device)
{

DWORD addr;
int i, j ;
BYTEblock[256] ;
BYTE f block [256] ;
DWORD t ;
#define LAST_ADDR 0x0002FPPFL
extern int icount;

for (i = 0; i < 256; i++)
block[i] = (BYTE)i;

t = icount ,•
msu_sram_write(device, 0, (BYTE *)block, 256);
t = icount - t;
dprint("SRAM 256 byte block write time = %ld ticks.\n", t);
t = icount;
msu_sram_read(device, 0, (BYTE Mblock, 256);
t = icount - t;
dprint("SRAM 256 byte block read time = %ld ticks. \n", t) ;
return;

dprint ("Writing SRAM data (# = 64K)\n"),-
for (i = 0, addr = 0L; addr <= LAST ADDR; addr += 256)

{
msu_sram_write(device, addr, (BYTE *)block, 256);

if (++i == 256)

{
i = 0;
dprint("#");

}
}

dprint ("\nReading back SRAM data (# = 64K)\n"),-

for (i = 0, addr = 0L; addr <= LAST ADDR; addr += 256)
{

msu_sram_read(device, addr, (BYTE *)fblock, 256);
for (j = 0; j < 256; j+ +)

{
if (fblock[j] !=block[j])

{
dprintf'SRAM read back error at %1X, %X should be %X\n",

(DWORD) (addr+j) , fblock[j], block [j]);
return;

}
}
if (++i == 256)

(
i = 0;
dprint(»#");

}
}

dprint{"\nFinished: OK.\n");

} /* End of msu_stest() */

/***#** + i + # + i1t + lt, + ^:t1j.#lt.it##lt.lt

*
* voidmsu_set_saddr(int device, DWORD addr)
*
* Set an address to the SRAM array on a particular device.
*

186

void msu_set_saddr(int device, DWORD addr)

{
pcb_write(device, 0, (WORD)((addr) & OxOOOOOOFFL));
pcb_write(device, 1, (WORD) (((addr) & OxOOOOFFOOL) >>8)) ;
pcb_write(device, 2, (WORD)(((addr) & OxOOFFOOOOL)>>1S));

} /* End of msu_set_saddr() */

*
* voidmsu_set_faddr(int device, DWORD addr)
*
* Set an address to the Flash array on a particular device.

voidmsu_set_f addr (int device, DWORD addr)

{
pcb_write(device, 0, (WORD)((addr) & OxOOOOOOFFL));
pcb_write(device, 1, (WORD)(((addr) & OxOOOOFFOOL)>>8));
pcb_write(device, 2, (WORD)((((addr) | Ox00400000L) & OxOOFFOOOOL)>>1S));

} /* End of msu_set_faddr() */

*
* voidmsu_save_tlra()
*
* Save a telemetry structure to Mass Storage.

•A**/

voidmsu_save_tlm(tlm_record_struct *r_tlm)
(

int sector;
int next_sector;
int remaining;
DWORD msu_ptr;

/* Calculate, and add CRC to end of the record */
prepare_crc(r_tlm, sizeof (tlm_record_struct) -2); /* -2 due to CRC */

/* Is there enough room on the existing sector to write out this telemetry
* record, and the next record ?

*/
msu_ptr = (DWORD)(msu_tlm_rec_num * sizeof(tlm_record_struct));
remaining = msu_ptr%FLASH_SECTOR_SIZE;
if (remaining < 2*sizeof (tlm_record_struct))

{
/* There is not enough room for this and the next record. Erase the
* next highest sector (unless it is time to wrap around).
V

sector = msu_ptr/FLASH_SECTOR_SIZE;
if (sector == FLASH_SECTOR_MAX)

next_sector = 0;
else

next_sector = sector+1;

/* erase the "next" sector */
msu_flash_erase_sector(MSA, next_sector);
msu_flash_erase_sector(MSB, next sector);

/* Save the record to both MSA and MSB */
msu_flash_write(MSA, msu_ptr, (BYTE *)r_tlm, sizeof(tlm_record_struct)),
msu_f lash_write (MSB, tnsu_ptr, (BYTE *)r_tlm, sizeof (tlm_record_struct)) ;

/* Update counter for next time */
if (next_sector == 0)

msu_tlm_rec_num = 0;
else

msu_tlm_rec_num++ ;

} /* End of msu_save_tlm() */

187

*
* int msu_get_tlm()

* Retrieve a telemetry structure from Mass Storage.
*

int msu_get_tlm(tlm_record struct *r tlm, int rec num)
{

int flag = NO_ERROR;
DWORD msu_ptr;

msu_ptr = (DWORD) (rec_num * sizeof(tlm_record_struct));

msu_flash_read(MSA, msu_ptr, (BYTE*)r_tlm, sizeof (tltn_record_struct)) ;
if (check_crc(r_tlm, sizeof(tlm record struct)) != 0)
{

/* Try the other Mass Storage Flash */
msu_flash_read(MSB, msu_ptr, (BYTE*)r_tlm, sizeof(tlm_record_struct));
if (check_crc(r_tlm, sizeof(tlm_record_struct)) != 0)

flag = ERROR;

}

return(flag);

} /* End of msu_get_tlm() */

Z**^*^^^^^
*
* int msu_check_flash_tlm()
*
* Check Flash for already stored telemetry records. This is first called
* when the system is Reset to see if any prior state history has already
* been saved to the Flash.

***** / • »»•im«n*mtiim»tm»i»mtiim»*((ii»inmnt,uunmin(iii

int msu_check_f lash_tlm (void)
{

int rec_num;
DWORD msu_ptr;
int tryb = FALSE;
DWORD etime;
int flag = NO_ERROR;
int wrap = FALSE;
tlm_record_structrtlm;
tlm record struct*r tlm;

/* First, check using MSA. */
/* Do a search looking for unused portions of the Flash. */
if ((rec_num = msu_flash search(MSA)) != NO TLM FIND)
{ " "

wrap = (rec_num & TLM_WRAP) ? TRUE : FALSE;
rec_num &= ~TLM_WRAP;

/* MSA has an empty location. */
msu_ptr = (DWORD)(rec_num * sizeof (tlm_record_struct)) ;

msu_flash_read(MSA, msu_ptr, (BYTE*)r_tlm, sizeof(tlm_record_struct));
if (check_crc(r_tlm, sizeof(tlm_record_struct)) != 0)

tryb = TRUE;

}
else

tryb = TRUE; /* attempt the same search with MSB. */

if (tryb)

if ((rec_num = msu_flash search(MSB)) == NO TLM FIND)
{ ~ "

/* ERROR. Erase both MSA and MSB. And assume NO recorded data. */
msu_flash_erase(MSA);
msu_flash_erase(MSB);
rec_num = 0;
flag = ERROR;

}

/* MSB has an empty location. */
wrap = (rec_num & TLM_WRAP) ? TRUE : FALSE;
rec_num &.= -TLM_WRAP;

188

msu_ptr = (DWORD) (rec_num * sizeof(tlm_record_struct));

msu_f lash_read(MSB, msu_ptr, (BYTE*) r_tlra, sizeof(tlm_record_struct));
if (check_crc(r_tlm, sizeof(tlm_record_struct)) != 0)

{
/* ERROR: Erase both MSA and MSB. And assume NO recorded data. */
msu_flash_erase(MSA);
msu_f lash_erase (MSB);
rec_nura = 0;
flag = ERROR;

I
else

{
/* MSA had problems, but not MSB. So, erase MSA. */
msu_flash_erase(MSA);

}

/* Now, process the last recorded record by using it as the most recently saved
* history regarding the state of the spacecraft.
V

/* If the record number returned from the search is not zero, then
* assume that there is a prior record and this is not the first time
* recording.
* If the record number returned from the search is zero, then this could be
* the first time recording (or at least first timer recording since the
* Flash was erased) . And thus, there is no history of data to examine.
*/

if (flag == ERROR)

{
/* No state history, both MSA and MSB have just been erased.
* Begin as if ejection has just occurred.
V

msu_tlm_rec_num = 0;
msu_tlm_last_rec_num = N0_REC_NUM;
msu tlm first rec num = 0;

}

else if (wrap == FALSE)
{

if (rec num == 0)

/* Empty Flash */
msu_tlm_rec_num = 0;
msu_tlm_last_rec_num = NO_REC_NUM;
msu_tlm_f irst_rec__num = 0;

else

{
/* Flash has data, but no wrap around is in effect */
msu_tlrn_rec_num = rec_num;
msu_tlm_last__rec_num = rec_num - 1;
msu_tlm_f irst_rec__num = 0;
msu_get_tlm (&tlm_record, msu_tlm_last_rec__num) ;

}
}

else if (wrap == TRUE)

{
/* Flash has data, and wrap around is in effect */
msu_tlm_rec_num = rec_num;
if (rec_num == 0)

msu_tlm_last_rec_num = 0;
else

msu_tlm_last_rec_num = rec_num - l;
/* calculate msu_tlm_first_rec_nura */
msu_tlm_f irst_rec_num = msu_calc_f irst_rec (rec_num) ;
msu_get_tlm{&tlm_record, msu_tlm_last_rec__num) ;

}

} /* End of msu_check_flash_tlm() */

* msu_f lash_search ()
*
* Check Flash via a "top" binary search. That is, use an increasing memory
* binary search to see if any "empty" tlm records exists (not recorded yet) .

189

* When performing the "divide and conquer", always take the upper portion of
* memory.
*
* If no "empty" record is found, perform a search starting at the bottom and
* look for the first "empty" record. This is not a fast search (its linear),
* but there is no way around it since one has no idea where the first hole
* could be and there is no ordering.

* The "empty" record number is returned.
*
**/

WORDmsu_flash_search(int device)
{

WORDbottom, top, mid, r, sector;
DWORD etime;
DWORD msu_ptr;

/* Binary Search */

/* These are the end points of the tlm record storage. Attempt to find
* an "empty" storage record. Assuming no lower "bottom" holes exist
*/

bottom = 0;

top = FLASH_SIZE/sizeof(tlm_record_struct);
while {(top - bottom) > 1)

f
mid = (bottom + top)/2;
msu_ptr = mid*sizeof(tlm_record_struct);
msu_flash_read(device, msu_ptr, &etime, sizeof(DWORD));
if (etime != OxFFFFFFFFL) /* in use, look higher */

bottom = mid;
else

top = mid;

msu_ptr = bottom*sizeof (tlm_record_struct) ;
msu_flash_read(device, msujptr, fcetime, sizeof(DWORD));
if (etime == OxFFFFFFFFL)

return (bottom | NO_TLM_WRAP) ;
else if (etime == OxFFFFFFFFL)

return (top | NO_TLM_WRAP) ;

/* ELSE -> not found via binary search... continue....*/

/* Try a "bottom" based search. That is, use a decreasing memory
* binary search. */

for (sector = 0; sector <= FLASH SECTOR MAX; sector++)
{

r = ((sector+1) *FLASH_SECTOR_SIZE) /sizeof (tlm_record_struct) ;
msu_ptr = r * sizeof(tlm_record_struct);
msu_f lash_read(device, msu_ptr, ketime, sizeof(DWORD));
if (etime != OxFFFFFFFFL) /* in use, skip this sector */

continue;
else

{
/* Examine this sector for the first empty location */
/* Do this with a binary search within this sector */
bottom = (sector * FLASH_SECTOR_SIZE) /sizeof (tlm_record_struct) ,-
top = (((sector + 1) * FLASH_SECTOR_SIZE)/sizeof (tlm_record_struct))
while ((top - bottom) > 1)

{
mid = (bottom + top)/2;
msu_ptr = mid*sizeof(tlm_record_struct) ;
msu_flash_read(device, msu_ptr, &etime, sizeof(DWORD));
if (etime != OxFFFFFFFFL) /* in use, look higher */

bottom = mid;
else

top = mid;

msu_ptr = bottom*sizeof(tlm_record_struct);
msu_flash_read(device, msu_ptr, &etime, sizeof(DWORD));
if (etime == OxFFFFFFFFL)

return(bottom | TLM_WRAP);
else if (etime == OxFFFFFFFFL)

return (top | TLM_WRAP) ;
}

}

return (NO_TLM_FIND) ;

/* End of msu_flash_search() */

190

/***
*
* int msu_flash__erase_sector(int device, int sector)
*
* Erases appropriate sector in the Flash array. The sector is the absoulute
* sector for the entire array of Flash memory, thus the relative sector
* within the device must be determined, as well as the actual device itself.

*/ ***

int msu_flash_erase_sector(int device, int sector)

{
register BYTE fdata;
register int pass = TRUE;
DWORD base;
int x;

/* First, determine which of the Flash devices contains the absolute sector.
* The compares are quicker than using arithmetic .
*/

if (sector < FLASH_SECTORS_PER_DEVICE)
base = OL;

else if (sector < FLASH_SECTORS_PER_DEVICE*2)
base = FLASH_DEVICE_SIZE;

else if (sector < FLASH_SECT0RS_PER_DEVICE*3)
base = FLASH_DEVICE_SIZE*2;

else if (sector < FLASH_SECT0RS_PER_DEVICE*4)
base = FLASH_DEVICE_SIZE*3;

msu_set_faddr(device, (base + 0x00005555L));
pcb_write(device+l, 0, (BYTE)OxAA);
msu_set_faddr(device, (base + 0x00002AAAL));
pcb_write(device+l, 0, (BYTE)0x55);
msu_set_faddr(device, (base + 0x00005555L));
pcb_write(device+l, 0, (BYTE) 0x80) ,-
msu_set_faddr (device, (base + 0xO0005555L)) ;
pcb_write(device+l, 0, (BYTE)OxAA);
msu_set_faddr (device, (base + Ox00002AAAL)) ;
pcb_write(device+l, 0, (BYTE)0x55);
/* Relative sector within the Flash device in address bits A16 - A14. */
msu_set_faddr(device, (base + (sector%FLASH_SECTORS_PER_DEVlCE) << 14)),-
pcb_write(device+l, 0, (BYTE)0x30);

fdata = pcb_read(device+l, 0);
x = 0;
while (((fdata & 0x80) != 0x80) && (x < ERASE_TIME_LIMIT))

{
if (fdata & 0x20)

(
fdata = pcb_read(device+l, 0) ;
if ((fdata & 0x80) == 0x80)

break ,-
else

{
pass = FALSE;
break;

}
}

fdata = pcb_read(device+l, 0) ,-
X++;

} /* End of WHILE */

pcb_write (device, 2, 0x48); /* Point to landing zone for low power */

if (x == ERASE_TIME_LIMIT)
return(0x80 | sector);

else
return(0);

} /* End of msu_flash_erase_sector () */

*
* int msu_calc_f irst_rec (int rec_num)

* Determine the first (oldest) record used in Flash based on the current

191

* record number and assuming data wrap around is in effect.

* This location is the first complete (whole) record in the sector after
* the sector that contains the current record, rec_num.
*

int msu_calc_first_rec (int rec_num)

{
int s, snext, r;

/* Determine the next sector */
s = (rec_num*sizeof (tlm_record_struct)) /sizeof (FLASH_SECTOR_SIZE) ;
if (S == FLASH_SECTOR_MAX)

snext = 0;
else

snext = s + 1;

/* determine # of complete records in Flash upto the next */
r = (snext*sizeof (FLASH_SECTOR_SIZE))/sizeof (tlm_record_struct) ;

/* the next complete record in the next sector is just the next record */

return(r+1);

/* End of msu_calc_f irst_rec () */

End of msu.h, msu.c

192

pcb.h, pcb.c

*
* PCB.H
*
* Include file for Peripheral Control Bus (PCB) software interface.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* 1 h

* 4 March 1993 Jah Creation
* 8 Sept 1995 Jah Adoption to PANSAT System Controller architecture
*

#ifdef PCB
void pcb_init (void) ;
void pcb_portc (int bitnum, int mode);
unsigned int pcb_read(unsigned int select, unsigned int addr) ,-
void pcb_write(unsigned int select, unsigned int addr, unsigned int value);

tendif

/* prototypes for modules other than pcb.c */
ttifndef PCB

extern void pcb_init(void);
extern void pcb_portc(int bitnum, int mode);
extern unsigned int pcb_read(unsigned int select, unsigned int addr) ,-
extern void pcb_write(unsigned int select, unsigned int addr, unsigned int value);

#endif

/* Macros for PCBW and PCBR */
idefine pcbw_m(select, addr, value) {\

outp(PCB_PPI_PORTA, (value)); \
OUtp(PCB_PPI_P0RTB, PCB_READ_OFF | PCB_WRITE_OFF | ((select) & OxOOOF) | (((addr) & 0x0003) << 4));

\
outp(PCB_PPI_PORTB, PCB_WRITE_ON | ((select) & OxOOOF) | (((addr) i 0x0003) << 4)); \
outp(PCB_PPI_PORTB, PCB_WRITE_OFF | ((select) & OxOOOF) | (((addr) & 0x0003) << 4));)

#define pcbr_m(select, addr, value) {\
outp(PCB_PPI_PORTB, PCB_READ_OFF | PCB_WRITE_OFF | ((select) & OxOOOF) | (((addr) & 0x0003) « 4));

\
outp(PCB_PPI_PORTB, PCB_READ_ON | ((select) & OxOOOF) | (((addr) & 0x0003) << 4)) ,- \
outp (PCB_PPI_CTRL, 2) ; \
OUtp(PCB_PPI_CTRL, 3);\
OUtp(PCB_PPl_PORTB, PCB_READ_OFF | ((select) & OxOOOF) | (((addr) & 0x0003) << 4)); \
(value) = inp(PCB_PPI_PORTA) ,- }

*
* PPI Interface on a DCS to control the Peripheral Control Bus.
*
* Using Mode 2 (OxCO) the PPI is programmed to support strobed
* bidirectional bus I/O using Port A. Port B is used as output, and
* port C is used for handshaking and other output purposes.
*
* Port A contains the data (byte value) which is moved across the
* control bue port B contains the device selection and sub-address
* control bite, and the Read and Write strobes.
*

Sdefine PCB_PP1_BASE 0x100
tdefine PCB_PPI_PORTA PCB_PPI_BASE+0
#define PCB_PPI_PORTB PCB_PPI_BASE+2
#define PCB_PPI_PORTC PCB_PPI_BASE+4
#define PCB_PPI_CTRL PCB_PPI_BASE+6

#define PCB_PPI_INIT OxCO

/* Read and Write Line Toggling Controls */
#define PCB_READ_ON 0x40
ttdefine PCB READ OFF OxCO

193

#define PCB_WRITE_ON 0x80
#define PCB WRITE OFF OxCO

*
* Devices on the PCB

* These devices are selected via the DCS PPI for PCB control.
* PPI port B is the addressing register. The following device
* selects use bits 3 - bits 0 (D3 - DO) of PPI Port B.

* Note that the low order bit (DO) is used to differentiate
* between the two selects on the same unit. Device subaddresses
* are not included here, since they are particular to a device.
*

#define SCA 0x02
«define SCAO SCA /* System Control A */
«define SCA1 (SCA+1)

«define SCB OxOA
«define SCBO SCB /* System Control B */
«define SCB1 (SCB+l)

«define TMUXA
«define TMUXAO
«define TMUXA1

0x04
TMUXA /* Analog MUX A */
(TMUXA+1)

«define TMUXB
«define TMUXB0
«define TMUXB1

OxOC
TMUXB /* Analog MUX B */
(TMUXB+1)

«define MSA 0x06
«define MSA0 MSA /* Mass Storage A */
«define MSA1 (MSA+1)

«define MSB OxOE
«define MSB0 MSB /* Mass Storage B */
«define MSB1 (MSB+1)

«define RF 0x00
«define RF0 RF /* RF System */
«define RF1 (RF+1)

«define EPS 0x08
«define EPS0 EPS /* Electrical Power System */
«define EPS1 (EPS+1)

/* EPS Selects S3-S0 */
«define EPS_PORT_S0 0x08
«define EPS_PORT_Sl 0x08
«define EPS_PORT_S2 0x08
«define EPS_PORT_S3 0x08
«define EPS_PORT_S4 0x09
«define EPS_PORT_S5 0x09
«define EPS_PORT_SS 0x09
«define EPS_PORT_S7 0x09

/* EPS Sub-addresses A1-A0 */
«define EPS_PORT_A0 0x00
«define EPS_PORT_Al 0x01
«define EPS_PORT_A2 0x02
«define EPS_PORT_A3 0x03
«define EPS_PORT_A4 0x00
«define EPS_PORT_A5 0x01
«define EPS_PORT_A6 0x02
«define EPS_PORT_A7 0x03

* Subsystem addresses of PCB devices
+

/********************************** + ************************************* + ****

* Mass Storage
* PPI Interface: Indexed using MSxl
* Data Port: Indexed using MSx2

194

#define MS_PPI_BASE 0
#define MS_PPI_PORTA MS_PPI_BASE+0
tdefine MS_PPI_PORTB MS_PPI_BASE+1
#define MS_PPI_PORTC MS_PPI_BASE+2
#define MS_PPI CTRL MS PPI BASE+3

*
* PCB.C

* Interface routines for the Peripheral Control Bus (PCB).

* Petite Amateur Navy Satellite (PANSAT) .
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
+ , .

* 4 March 1993 Jah Creation
* 8 Sept 1995 Jah Adoption to PANSAT System Controller architecture
* 24 April 1996 Jah Make PCB functions non-interruptable.
*

#include "gen_defs.h"
#include "gen_apis-h"

tdefine PCB
Sinclude "pcb.h
#undef PCB

Sinclude "dcs.h"

*
* pcb_init()
*
* Initializes the PCB by preparing the PPI controlling the PCB to work
* in the bidirectional strobed data mode, and to make sure that no
* read or write commands are occuring on the PCB.
*

void pcb_init(void)

{
OUtp(PCB_PPI_CTRL, PCB_PPI_INIT) ;

outp(PCB_PPI_PORTB, OxCO);

pcb_portc(0, OFF); /* Modem Power OFF */
pcb_portc(l, SET); /* PCI = PPI Input Strobe ON */
pcb_portc(2, RESET); /* Reset EDAC Error Acknowledge */
pcb_portc(2, SET);

} /* End of pcb_init() */

/************** + ** + ** + ******

*
* pcbjportc ()
*
* Toggles the three output bits of Port C on the PPI.
*
******* + **** + ***************** + ********* + *** + + *************************** + **/

void pcb_portc(int bitnum, int mode)

{
register unsigned char temp;
register WORD state;

mode &= 0x01; /* make sure only bit DO is used in mode */

195

State = disable_ints();

switch(bitnum)
{

case 0:
temp = mode;
break;

case 1:
temp = 0x02 j mode;
break;

case 2:
temp = 0x04 | mode;
break ,-

default:
temp = OxFF;

}

if (temp != OxFF)
outp(PCB_PPI_CTRL, temp);

if (state)
enable_ints 0 ;

) /* End of pcb_portc() */

*
* pcb_read()

* Read one data (byte) from the Peripheral Control Bus via the onboard PPI.

WORD pcb_read (unsigned int select, unsigned int addr)

(
/* Note: register not used so that this routine is re-entrable
* at the point of the last statement, return(temp).
*/

register WORD temp = (select & OxOOOF) | ((addr & 0x0003) << 4);
WORD value;
register WORD state;

state = disable_ints0;

/* Set Device Select and address without read or write commands */
outp(PCB_PPI_PORTB, OxCO | temp);

OUtp(PCB_PPI_P0RTB, 0x40 | temp); /* PB7 = /RD goes LOW */
outp(PCB_PPI_CTRL, 2); /* PCI = /Strobe goes LOW */
outp(PCB_PPI_CTRL, 3); /* PCI = /Strobe goes HIGH */
outp(PCB_PPI_PORTB, OxCO | temp); /* PB7 = /RD goes HIGH */

value = inp(PCB_PPI_PORTA);

if (state)
enable_ints();

/* Note: enabling interrupts BEFORE returning from PCBR can result
* in another pie-e ol software (e.g. inside an ISR) calling PCBR
* during the «tack manipulations following the above _enable().
* This would actually result in the issuing of the new PCBR and
* returning th* value of the PCBR, followed by that piece of software
* returning via »r. IRET, and then the PCBR that was interrupted would
* coutinue with ite return!...).
V

return(value);

} /* End pcb_read(! •/

/****************•»••*•••**********************+***********+***********++*****
*
* pcb_write()
*
* Write one data (byte) from the Peripheral Control Bus via the onboard PPI.
*

196

void pcb_write(unsigned int select, unsigned int addr, unsigned int value)

register WORDtemp = (select & OxOOOF) | ((addr & 0x0003) << 4);
register WORD state;

state = disable_ints();

outp(PCB_PPI_PORTA, value);

/* Set Device Select and address without read or write commands */
outp(PCB_PPI_PORTB, (PCB_READ_ON | PCB_WRITE_ON) | temp);

/* Toggle the Write line */
OUtp(PCB_PPI_PORTB, (PCB_WRITE_ON | temp));
outp(PCB_PPI_PORTB, (PCB_WRITE_OPF | temp));

if (state)
enable ints();

} /* End pcb_write() */

End of pcb.h, pcb.c

197

print.h, print.c
/*****+**
*
* PRINT.H
*
* DCS printf: void dprint(char «format,...)
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:

What

* 1 Feb 1991 Jah Creation (Star)
* 2 Nov 1993 Jah Adopted for DCS (from Star)
*
* ♦it**/

/* Include specifics for PRINT.C */
#ifdef PRINT

/* Internal routines to print.c */
static int get_width(char *, int *);
static int get_precision (char *, int *),-
static void print_fp(char *obuf, double x, int precision, int width);
static void print_ptr(char *, void far *, int);
static unsigned long int power (unsigned int x, unsigned int y) ,-

#endif

/* Include for all other modules */
#ifndef PRINT

extern void dprint(char *format,...);
#endif

/♦•A***

* PRINT.C
*
* DCS printf: void dprintlchar »format,...)
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + +

Creation
Adopted for DCS
FP support

*
**/

1 Feb 1991 Jah
2 Nov 1993 Jah
18 Apr 1996 Jah

#include <stdarg.h>
#include <ctype.h>
«include <string.h>
«include <stdio.h>
#include <stdlib.h>

#include "gen_defs-h"

«define PRINT
«include "print.h"
«undef PRINT

«include "scc.h"

«define NEGATIVE 1
«define PLUS 2
«define NEAR_PTR 1
«define FAR PTR 2

198

* get_width()
*
* Get the width for a specific output parameter. This is a number field
* placed in front of the format type of a star_print format. This
* number is either followed by a format type (letter) or a period (.) .
* The period denotes that a precision field will also be specified.
*
* This routine outputs the width.
*
**/

static int get_width(char *format, int *i)

{
int itemp;
char buf[10];
int n;

itemp = *i;
n = 0;
buf [n] = NULL_CHAR;
while (isdigit(format[itemp]))

buf[n++] = format[itemp++] ;
buf[n] = NULL_CHAR;

i = itemp; / update the marker in format string */

return(atoi(buf));

} /* End of get_width() */

/***
*
* get__precision()
*
* Get the precision for a specific output parameter. This is a number
* field which can be preceeded by a + (default) or -. This number is
* then followed by a format type (letter) .
*
* See print_fp() for more details.

* This routine outputs the precision which can be positive or negative.
*
♦A**/

static int get_precision(char «format, int *i)

{
int itemp;
char buf[10],-
int n;
int sign;
int precision;

itemp = *i;
sign = PLUS;
if (format[itemp] == '-*)

{
sign = NEGATIVE;
itemp++;

}
else if (format[itemp] == '+')

itemp++; /* already is PLUS don't need to flag this */

n = 0;
buf[n] = NULL_CHAR;
while (isdigit(format[itemp]))

buf[n++] = format[itemp++] ;
buf [n] = NULL_CHAR;

precision = atoi (buf) ,-
if (sign == NEGATIVE)

precision *= -1;
i = itemp; / update the marker in format string */

return(precision);

} /* End of get_precision() */

/***************************• + ********* + ******** + **** + **** + ****** *************

199

print_fp()

Display value of a floating point number, either float or double.
(The float is already casted as a double when passed to this routine.

** *********************/

static void print_fp(char *obuf, double x, int precision, int width)
{

char buf [40] ;
int buf_cnt = 0;
double q, ql, q2;
long int xi, d,-
int c, n;

gcvt(x, precision, buf);
strcat(obuf, buf);
return;

if (x == 0.0)
{

buf[buf_cnt++] = '0'
buf[buf_cnt++] = ■.■
buf[buf_cnt++] = '0■;
buf[buf_cnt] = NULL_CHAR;
strcat(obuf, buf);
return;

}

/* Adjust precision to correct defaults for FP printing */
if (precision > 8)

precision = 8;
if (precision < 0)

precision = 0;

if (x < 0.0)
(

buf [buf_cnt+ +] = ' - ' ;
X *= -1;

)

/* Determine # of digits BEFORE the decimal place */
for (c = 0, q = x; q > 1; c++)

q /= 10.0;

if (c == 0)
buf[buf_cnt++] = '0'

/* add leading zero before . -> O.xyz */

/* Display the digits BEFORE the decimal place */
for (q = x, n = 0; n < c; n++)

(
d = power(10, (c-1)-n);
ql = q/d;
buf [buf_cnt++] = '0' + (unsigned intlql; /* TOP digit */

q2 = (unsigned intlql * d;
q = q - q2;

}
buf[buf_cnt++] = '.';

/* Only the most significant */
/* Remove largest factor of 10 */

for (n = 0; n < precision; n++)

{
q - q * 10;
ql = (unsigned int) q; /* o.xyz --> x.yz */
buf [buf_cnt++) = '0' + ql; /* TOP digit (x) */

q = q - ql; /* remove largest factor of 10 */

buf [buf_cnt++] = NULL_CHAR;
strcat (obuf, buf) ,-
return;

/• End of print_fp() */

/**********************+********************+*****+*************** ************

print_ptr()

200

* Pointer print for FAR pointer (SEGMENT:OFFSET) or
* NEAR pointer (OFFSET).
*
* The parameter mode indicates if this is for NEAR or FAR pointer
* printing.

* The format for output is:
* 0 1
* (char position) 01234567890
* NEAR xxxx <-- the OFFSET
* FAR xxxx:yyyy <-- the OFFSET: SEGMENT
*
**j

static void print_ptr (char *obuf, void far *ptr, int mode)

{
int n ;
unsigned char c;
char buf[10];
int b_cnt;
unsigned long p;

if (mode == FAR_PTR)
b_cnt = 9;

else
b_cnt = 4;

p = (unsigned long int) ptr;
buf[b_cnt--] = NULL_CHAR;
for (; b_cnt >= 0; b_cnt--)

{
c = (unsigned char) (OxOOOOOOOFL & p);
if ((c >= 0) && (c <= 9))

buf [b_cnt] = c + '0';
else

buf[b_cnt] = (c - OxOA) + 'A',
p >>- 4;
/* p>>=l; p>>=l; p>>=l; p>>=l; */
if (b_cnt == 5)

buf[--b_cnt] = ' : ';
}

strcat(obuf, buf);

} /* End of print_ptr() */

* dprint()
*
* Printf for DCS.
*
* Special characters (translated by compiler!)
* "\n" CRLF

"\\" \

* Format: %[width][.precision][size]type
*
* Types
* %c char
* %s string (char *)
* %d int (as decimal)
* %i int
* %u unsigned int
* %x int (as hex)
* %X int (as HEX)
* %p NEAR pointer (OFFSET)
* %P FAR pointer (SEGMENT:OFFSET)
* %f fp (%lf -> double, %f ->float)
*
* size
* L/l - long
* H/h - short

**/

void dprint(char *format,...)

{
va_list arg_ptr; /* ptr to argument list */
int i; /* index in format string */

201

int temp_int ;
1 ong t emp_l ong;

double temp_fp;

char temp_char;

char *temp_charptr;

void far *temp__ptr;

void *temp_ptr_near;

static char buf [20] ; /* temp buffer */

static char obuf[200]; /* the output buffer */
int hflag, lflag;

int hex__upper ;

int width, precision;

static char crlf[3] = {CR, LF, NULL_CHAR};

int n,-

/* start variable arguement fetching */

va_start(arg_ptr, format);

i = 0;

obuftO] = NULL_CHAR;
while (format[i] != NULL_CHAR)
{

hex_upper = hflag = lflag = FALSE;
width = 100;
precision = 3;
buf[0] = NULL_CHAR;
switch (format[i])

case CR:
case LF:

1++;
streat(obuf, crlf);
break ,•

case '%':
i++;

/* width ? */
if ((format[i] >= '0') && (format[i] <= '9'))
{

/* i++; */ /* or more */
width = get_width(format, &i);

}

/* .precision ? */
if (format[i] == ■.•)
f

i++; /* or more */
precision = get_precision(format, &i);

}

if ((format[i] == 'h') || (format[i] == 'H'))

{
i + +;

hflag = TRUE;

/* set h flag */

}

if ((format[i] == '1') || (format[i] == 'L'))
{

i + +;

lflag = TRUE;

/* set 1 flag */

}

switch(format[i])/* TYPE */

{
case 'd1

case 'D'
case 'i'
case 'I'

i++;
if (lflag)

temp_long = va_arg(arg_ptr, long);
else

temp_long = (long) va_arg (arg_ptr, int);
ltoa(temp_long, buf, 10);
strncat(obuf, buf, width);
break;

case 'u' :
case 'U':

202

if (lflag)
temp_long = va_arg(arg_ptr, long);

else

temp_long = (long)va_arg(arg_ptr, int);

ltoa(temp_long, buf, 10);

strncat(obuf, buf, width);

break;

case 'X':

hex_upper = TRUE;

case 'x':

i + + ;

if (lflag)

temp_long = va_arg(arg_ptr, long);

else

temp_long = 0x0000FFFFL&(long)va_arg(arg_ptr, int);

ltoa(temp_long, buf, 16);

if (hex_upper)

for (n = 0; buf[n] != NULL_CHAR; n++)

buf[n] = (char)toupper{buf[n]) ;

strncat{obuf, buf, width);

break ,-

case 'c':
case 'C:

i++;
temp_int = va_arg{arg_ptr, int) ,-
temp_char = (char)(temp_int & OxOOFF);
buf[0] = temp_char;
buf[1] = NULL_CHAR;
strcat(obuf, buf),-
break;

case 's':
case 'S':

i + +;

temp_charptr = va_arg(arg_ptr, char *) ;

strcat(obuf, temp_charptr);

break;

case 'f':

case 'F':

i++;

if (lflag)

temp_fp = va_arg(arg_j?tr, double);

else

temp_fp = (double)va_arg(arg_ptr, float) ,-

print_fp(obuf, temp_fp, precision, width);

break;

case 'pr:

i + +;

temp_ptr = (void far *) va_arg (arg__ptr, void *) ;

print_ptr(obuf, temp_ptr, NEAR_PTR);

break;

case 'P':

i + + ;

temp_ptr = va_arg(arg_ptr, void far *) ;
print_ptr(obuf, temp_ptr, FAR_PTR);
break;

default: /* not supported */

1 ♦ » ;

break;

} /• End of SWITCH */

brpak, /• End of CASE •%' */

default

strncat(obuf, (format+i), 1) ;

i ♦ * .

break,

} /* End of SWITCH */

} /* End of WHILE */

/* send to serial port */

put_string(obuf);

va_end(arg_ptr);

203

} /* End of dprintO */

Z***
*
* pow()
*
**

unsigned long intpower(unsigned int x, unsigned int y)
(

unsigned int i;
unsigned long intp;

P = 1;
for (i = 1; i <= y; i++)

P *= X;

return (p) ;

} /* End of pow() */

End of print.h, printx

204

rf.h, rf.c

* RF.H
*
* Defines for the RF unit interface routines.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + +
* 30 Oct 1996 Jah Creation
*

«define RF_HPA 7
«define RF_LNA 6
«define RF_LHP_LHA 3
«define RF_LOP_LOA 2
«define RF_TX_RX 1
«define RF T R 0

Bifdef RF
«define T0CON 0xFF56
«define TOCNT 0xFF50
«define TOCMPA 0xFF52
«define TOCMPB 0xFF54

«define T1CON OxFFSE
«define T1CNT 0xFF58
«define T1CMPA 0xFF5A
«define T1CMPB 0xFF5C

static void rf_power(int mode);
static void rf_set(int Ctrl, int mode),
static void rf_timer(int delay);
static void rf_txpower (int mode);

«endif

«ifndef RF
extern void rf_power(int mode);
extern void rf_set{int Ctrl, int mode);
extern void rf_timer(int delay);
extern void rf_txpower(int mode);

«endif

* RF.C

* Interface routines for the RF unit.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + +
* 30 Oct 1996 Jah Creation

+********************/

«include "gen_def s .h"

«define RF
«include "rf.h"
«undef RF

205

static int rf_pcb = 0;

*
* void rf_power {int mode)

* Used to turn on or off the power to the entire RF unit,

void rf_power (int mode)

{
eps_set_power(RF, mode);

} /* End of rf_power() */

*
* voidrf_set (int Ctrl, int mode)
*
* Allows individual bit control of the RF PCB controls. Any bit can be
* toggled preserving other control bits. Note: the LNA logic is reversed.
*

voidrf_set (int Ctrl, int mode)

{
switch(Ctrl)

{
case RF_T_R:
case RF_TX_RX:
case RF_LOP_LOA:
case RF_LHP_LHA:
case RF_HPA:

if (mode == ON)
rf_pcb |= (1 << Ctrl);

else
rf_pcb &= ~(1 << ctrl);

pcb_write(RF, 0, rf_pcb);
break ;

case RF_LNA:
/* reversed logic for LNA control: this is because when the RF
* unit goes on, you want an LNA on by default.
*/

if (mode == OFF)
rf_pcb |= (1 << Ctrl);

else
rf_pcb &= -(1 << Ctrl);

pcb_write(RF, 0, rf_pcb);
break;

default:
break;

}

) /* End of rf_set() */

* voidrf_timer (int delay)
*
* Begins the RF transmitter timer using delay as a parameter (in seconds).
* Timers 0 and 1 are used in the cascade mode. Timer 0 is set to a maximum
* count, internal clock, retrigger, using Compare A only. Timer 1 is set
* to use an external clock (output of Timer 0) , in a one shot mode, using
* the dual mode Compare A/Compare B.

voidrf_timer(int delay)

{
outpw(T0CNT, 0);
outpw(T0CMPA, 0); /* maximum count (6553S) */
outpw(T0C0N, OxCOOl); /* internal elk, retrigger, CMPA only */

outpw(T1CNT, 0);
outpw(T1CMPA, 1) ; /* smallest compare A */

outpw(TlCMPB, delay * 28); /* -28 CMPB per second */
outpw(TlCON, OxCOOS); /* ext. elk, 1 shot, CMPA/CMPB dual mode */

206

} /* End of rf_timer{) */

/***
*
* voidrf_txpower(int mode)
*
* Change power level of the transmitter by controlling the 2-bit
* attenuator.

*** k******** ************/

voidrf_txpower(int mode)

{
rf_pcb -= OxCF; /* mask off all power bits (set to 0) */
rf_pcb |= ((mode & 0x03) << 4) ;
pcb_write(RF, 0, rf_pcb);

} /* End of rf_txpower() */

End of rf.h, rf.c

207

scc.h, scc.c
*
* SCC.H
*
* sec
+

* Petite Amateur Navy Satellite (PANSAT) .
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + +
* 17 July 1996 Jah Creation
*

typedef struct

{
BYTE reg;
BYTE data;

} scc_instr_struct;

#define
#define

SCCA 0
SCCB 1

#define
#define

SCC_CHA_BUF_SIZE
SCC_CHB_BUF SIZE

516
204

#define
#define
#define
#define

SCCA_CMD 2
SCCA_DATA 6
SCCB_CMD 0
SCCB DATA 4

/* Channel A Command */
/* Channel A Data */
/* Channel B Command */
/* Channel B Data */

tifdef SCC

ttdefine CHA_BUF_SIZE
tdefine CHB BUF SIZE

SCC_CHA_BUF_SIZE
SCC CHB BÜF SIZE

unsigned cnv_hex (char buf []) ,-
unsigned long int cnv_lhex(char buf[]);
char get_char (void) ;
void get_string(char «string, int max) ;
void put_string(char »string);
void hex_ascii_dump(BYTE *ptr, int count);
void scc_init(void);
void scc_write_table (scc_instr_struct tablet],
BYTE serial_in(void);
void serial_out(BYTE c);
void scca_wreg(int reg, int value);
void sccb_wreg(int reg, int value);
void sec hunt(void);

int channel) ;

#endif

tifndef SCC

extern unsigned cnv_hex(char buf[]);
extern unsigned long int cnv_lhex(char buf []) ;
extern char get_char (void) ;
extern void get_string (char «string, int max) ;
extern void put_string (char »string);
extern void hex_ascil_dump(BYTE *ptr, int count);
extern void scc_init (void) ;
extern void scc_write_table (scc_instr_struct tablet],
extern BYTE serial_in(void) ;
extern void serial_out (BYTE c) ;

extern void
extern void
extern void

extern BYTE
extern BYTE

int channel),

scca_wreg(int reg,
sccb_wreg(int reg,
scc_hunt(void);

cha_in_bufO[] ;
cha_out buf 0 [] ;

int value);
int value);

208

extern BYTE
extern BYTE
extern BYTE
extern WORD
extern WORD
extern WORD

txa;
rx_eom ;
hunt ;
a_txunderrun_eom ;
a_rxover run ;
a brk abort;

#endif

/***
*
* scc.c

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jan)
*
* Revision History:
* =================
* Date Who What

* 17 July 1996 Jah Creation

******* *************************************** **************************

#include
#include

ngen_defs.h"
"gen_apis.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define sec
#include "scc.h
tundef sec

#include "dcs.h"
ttinclude "print.h"
#include "terms.h"

WORD j im = 0;
WORDbl = 0
WORDb2 = 0
WORDb3 = 0
W0RDb4 = 0
WORDal = 0
WORDa2 = 0
W0RDa3 = 0
WORDa4 = 0

scc_instr_£
I

truct scca_3

I
{0x09, OxCO) /
{0x04, 0x20) /
{0x01, 0x00} /
{0x02, 0x00} /
{0x03, 0xC8} /
{0x05, 0x61} /
{0x06, 0x00} /
{0x07, 0x7E} /
{0x09, 0x22} /
{OxOA, OxAO} /
{OxOB, 0x09} /
{OxOC, 0x2E) /
(OxOD, 0x00} /
{OxOE, 0x02} /
{OxOE, 0x03} /
{0x03 0xC9} /
{OxOS 0x69} /
{0x00 0x80} /
{OxOf 0x00} /
{0x00 0x10} /
{0x00 0x10} /
{0x01 0x10} /
{0x09 0x2A} /
{OxFF, OxFF} /

force hardware reset */
xl clock, SDLC mode, SYNC mode */
disable DMA and interrupts */
zero interrupt vectors */
Rx 8 bits, Rx CRC enabled */
Tx 8 bits, Tx CRC enabled */
SDLC address field */
AUTO RTS, EOM, TX flag */
No vector and no INTACK */
CRC preset=l, NRZI, Flag idle */
TxCK=TRxC, RxCK=RTxC
TCL 76,800 Hz */
TCH */

/* BRG=PCLK, DPPL=BRG */

*/

/ Enable BRG, BRG=PCLK
Enable RX, CRC */
Enable TX, CRC */
Reset TxCRC */
clear all IE bits */
reset ext/status */
reset ext/status */
int on all Rx or special
enable interrupts}; */
End */

scc_instr_struct sccb init[] =

209

{0x04, 0x44}, /* xl6 clock, 1 stop, no parity */
{0x03, OxCO}, /* Rx 8 bits, Rx disabled */
{0x05, 0x60}, /* Tx 8 bits, DTR, RTS, Tx off */
{OxOB, 0x56), /* Tx & Rx=BRG, TRxC=BRG */
{OxOC, 0x16), /* TCL */
{OxOD, 0x00} , /* TCH */
{OxOE, 0x02}, /* */
{OxOE, 0x03), /* */
{0x03, OxCl), /* Rx 8 bits, Rx enabled */
{0x05, 0x6A), /* Tx 8 bits, Tx, RTS enabled */
{OxFF, OxFF} /* End */

BYTE hunt = FALSE;
WORDa_txunderrun_eom = 0;
WORDa_rxoverrun = 0;
WORDa_brk_abort = 0;

BYTEcha_in_bufO[CHA_BUF_SIZE] ;
BYTEcha_out_bufO [CHA_BUF_SIZE] ;
BYTEtxa = OFF;
BYTE rx_eom = FALSE ;

BYTE chb_in_buf [CHB_BUF_SIZE] ;
BYTE chb_out_buf [CHB_BUF_SIZE] ;
int chb_in_now = 0 ,-
int chb_in_next = 0;
int chb_out_now = 0;
int chb_out_next = 0 ,-

*
* cnv_hex()

fr********************/ ************************* ***********************

unsigned cnv_hex(char buf[])

{
int i ;
unsigned int val = 0;

i = 0;
while (buf[i] != '\0')

{
val *= 16;

/* ** ERROR ** w/ MSC6.0 compiler run-time lib*/
/* if (isdigit(buf [i])) */
/* ** ERROR ** w/ MSC6 . 0 compiler run-time lib*/

if ((bufti] >= '0') && (buf[i] <= '9'))
val += buf[i] - '0' ;

val += toupper(buf[i]) - 'A' + OxOA;

return(val);

} /* End of cnv_hex() */

/***
*
* cnv_lhex()

**

unsigned long int cnv_lhex(char buf[])
{

int i ;
unsigned long int val = 0;

210

i = 0;
while (buf[i] != '\0')
(

val *= 16;

/* ** ERROR ** w/ MSC6.0 compiler run-time lib*/
/* if (isdigitfbuf[i])) */
/* ** ERROR ** w/ MSC6.0 compiler run-time lib*/

if ((buf[i] >= '0') && (buf[i] <= '9'))
val += buf[i] - '0';

else
val += toupper(buf[i]) - 'A' + OxOA;

i++;

return(val);

} /* End of cnv_lhex() */

/*************************************** + ***** + ************ + ******************

*
* get_char()

********************+***********+********************+***+**+***+***********/

char get_char (void)

{
while (!is_serial_in())

return (serial_in()) ;

} /* End of get_char() */

*
* get_string()
+

* Get a character string delimited by an ENTER and null-terminate
* it. Can only accept upto max characters.

*** + **********************************/

voidget_string(char «string, int max)
{

register char c;
register int i;

i = 0;
c = get_char () ;
while (c != CR)

{
if (C == BACK_SPACE)

{
if (i > 0)

{
i-- ;
serial_out ((BYTE)BACK_SPACE) ;
serial_out((BYTE)' ');
Serial_out ((BYTE) BACK_SPACE) ;

}
}

else if (i < max)
{

string[i++] = c;
serial_out((BYTE)c);

}

c = get_char () ;

} /* End of WHILE */

string [i] = NULL_CHAR; /* Note: CR not saved - NULL instead */

} /* End of get_string() */

211

*
* hex__ascii_dump ()
*

void hex_ascii_durap(BYTE *ptr, int count)
{

WORD val;
int i, j;

for (i = 0; i < count; i + = IS)
{

for (j = 0; j < 16; j++)

{
val = ((WORD) * (ptr+i+j) S. OxOOFF);
if (val < 0x10)

dprint("0");
dprint("%X ", val);

)
dprint(" n); .
for (j = 0; j < 16; j+ +)

{
val = ((WORD)*(ptr+i+j) & OxOOFF) ;
if ((val >= 32) && (val <= 127))

dprint("%c",*(ptr+i+j));
else

dprint(".");
}
dprint("\n");

} /* End of hex_ascii_dump() */

* put_string()

* Send a null-terminated character string to the serial port.

voidput_string(char »string)
{

register WORD state;

while («string != NDLL_CHAR)
{

chb_out_buf [chb_out_next++] = *string++;
if (chb_out_next > CHB_BUF_SIZE-1)

chb_out_next = 0;
}

state = disable_ints0;
if (inp(SCCB_CMD) & 0x04)
(

outp (SCCB_DATA, chb_out_buf [chb_out_now++]) ;

if (chb_out_now > CHB_BUF_SIZE-1)
chb out now = 0;

if (state)
enable_ints 0;

/* End of put_string() */

* scc_init()
*

void scc_init (void)

{
scc_write_table(scca_init, SCCA) ;
scc_write_table(sccb_init, SCCB);

) /* End of scc_init() */

212

/***
*
* scc_write_table()

**

voidscc_write_table<scc_instr_struct table[], int channel)
{

int x;
int port ;

port = (channel == SCCA) ? SCCA_CMD : SCCB_CMD;

inp(port); /* read status */

for (x = 0; table[x].reg != (BYTE)OxFF; x++)

{
outp(port, table[x].reg);
outplport, table[x] .data) ;

}

} /* End of scc_write_table() */

/***
*
* serial_in()
*
* Serial input. Check to see if kbhitO was called to see if there
* was a key pressed (and thus the key pressed has already been
* retrieved and saved), if so return this. Otherwise, return 0.
*
**/

BYTE serial__in (void)

{
register BYTE key;

if <chb_in_now == chb_in__next)
key = 0;

else

{
key = chb_in_buf [chb_in_now++] ;
if (chb_in_now > CHB_BUF_SIZE-1)

chb_in_now = 0,-

}

return(key);

} /* End of serial_in() */

/***
*
* is_serial_in()

**/

int is_serial_in(void)

{
if (chb_in_now == chb_in_next)

return (FALSE) ,-

else
return(TRUE);

} /* End of is_serial_in() */

/** ** *******
*
* serial_out()
*
* Serial output. Add the given character to the wrap-around output buffer.
* No check is made to see if the buffer is full.
*
**/

void serial_out(BYTE c)

213

{
register WORD state;

chb_out_buf[chb_out_next++] = c;
if (chb_out_next > CHB_BUF_SIZE-1)

chb_out_next = 0 ,-

state = disable_ints();
if ((inp(SCCB_CMD) & 0x04))

{
outp (SCCB_DATA, chb_out_buf [chb_out_now+ +]) ;

if (chb_out_now > CHB_BUF_SIZE-l)
chb_out_now = 0;

}
if (state)

enable_ints();

} /* End of serial_out() */

*
* scc_isr()
*
******.** + */

void interrupt far scc_isr(

unsigned es, unsigned ds, unsigned di, unsigned si,
unsigned bp, unsigned sp, unsigned bx, unsigned dx,
unsigned ex, unsigned ax, unsigned ip, unsigned cs,
unsigned flags)

static WORD save_rr0b = 0;
static WORD save_rr0a = 0;
static WORD save_rrlb = 0;
static WORD rr2b, rr3a;
static WORD rrOb, rrlb;
static WORD rrOa, rrla;

do

{
/* First, read the Interrupt Vector from Read Register 2. This is a
* unique SCC register (i.e. it is not duplicate for both channels.
* Furthermore, this register is accessed from channel B.
*/

inp(SCCB_CMD) ; /* Reset pointer bits */
outp(SCCB_CMD, 2);
rr2b = inp(SCCB_CMD);
switch(rr2b)

{
case 0x00: /* Ch B Tx buffer empty */

bl++;
if (chb_out_now != chb_out_next)

{
outp (SCCB_DATA, chb_out_buf [chb_out_now++]) ;
if (chb_out_now > CHB_BUF_SIZE-1)

chb_out_now =0; /* time to wrap-around */

else/* no more to send out */

{
outp(SCCB_CMD, 0x28);/* WR0B = 0x28 */

}

outp(SCCB_CMD, 0x38); /* reset highest IUS */

break ,-

case 0x02: /* Ch B Ext/Status change */
b2 + +;
outp(SCCB_CMD, 0);
rrOb = inp(SCCB_CMD);

if ((save_rr0b & 0x80) * (rrOb & 0x80))
/* change in break/abort status */
inp(SCCB_DATA);

214

f (rrOb & 0x40) /* Tx underrun/EOM detected */

outp(SCCB_CMD, OxCO);

if (rrOb & 0x04) /* Tx buffer empty */

if (chb_out_now != chb_out_next)

{
outp (SCCB_DATA, chb_out_buf [chb_out_now++]) ;
if (chb_out_now > CHB_BUF_SIZE-1)

chb_out_now =0; /* time to wrap-around */

else/* no more to send out */
{

OUtp(SCCB_CMD, 0x28);/* WR0B = 0x28 */

}

if (rrOb £t 0x01) /* Rx data available */

{
chb_in_buf [chb_in_next+ +] = inp(SCCB_DATA);

if (chb_in_next > CHB_BUF_SIZE-1)

chb_in_next = 0; /* time to wrap-around */

save_rr0b = rrOb;

outp(SCCB_CMD, 0x10)

OUtp(SCCB_CMD, 0x30)

OUtp(SCCB_CMD, 0x3 8)

break;

/* reset ext/status interrupt */

/* reset special Rx cond. status */

/* reset highest IUS */

case 0x04: /* Ch B Rx data ready */

b3++;

chb_in_buf [chb_in_next++] = inp(SCCB_DATA);

if (chb_in_next > CHB_BUF_SIZE-1)

chb_in_next = 0; /* time to wrap-around */

outp(SCCB_CMD, 0x3 0); /* reset special Rx cond. status */

outp(SCCB_CMD, 0x38); /* reset highest IUS */

break,-

case 0x06: /* Ch B Special Rx condition */

b4++;

outp(SCCB_CMD, 0x01);

rrlb = inp(SCCB_CMD);

if (rrlb & 0x20)

/* Rx overrun error */

if (rrlb & 0x01)

/* data has cleared the (SCC) transmitter */

outp(SCCB_CMD, 0x30); /* reset special Rx cond. status */

outp(SCCB_CMD, 0x38); /* reset highest IUS */

break;

case 0x08: /* Ch A Tx buffer empty */

al + + ;

break;

case OxOA: /* Ch A Ext/Status change */

a2++;

outp(SCCA_CMD, 0x00);

rrOa = inp(SCCA_CMD);

if ((save_rr0a & 0x80) * (rrOa & 0x80))

/* change in break/abort status */

{
a_brk_abort++;
/* Force PA-100 into reacquire */

}

if (rrOa & 0x40) /* Tx underrun/EOM */

215

a_txunderrun_eom++;
/* OUtp(SCCA_CMD, OxCO); */

if (rrOa & OxlO)

{
hunt = TRUE;
/* ignore break/abort */
/* setup DMA for frame receive */

}
else

{
hunt = FALSE;
/* allow break/abort */

if (rrOa & 0x04) /* Tx buffer empty */
al++;

if (rrOa & 0x01) /* Rx character available */
a3++;

save rrOa = rrOa;

outp{SCCA_CMD, 0x10)
outp(SCCA_CMD, 0x30)
outp(SCCA_CMD, 0x3B)
break;

/* reset ext/status interrupt */
/* reset special Rx cond. status */
/* reset highest IUS »/

case OxOC: /* Ch A Rx data ready */
a3++;
break;

case OxOE: /* Ch A Special Rx condition */
a4++;
outp(SCCA_CMD, 0x01);
rrla = inp(SCCA_CMD);

if (rrla & 0x20) /* Rx overrun error */

{
a_rxoverrun++;

}

if ((rrla & OxCO) == 0x80) /* EOF with NO CRC error */

{
outpw(DOCON, 0xA3A4) ; /* STOP DMA 0 - no more Rx */
cha_in_buf0 [514 - inpw(DOTC) - 2] = NULL_CHAR;
/* make it a char string */
rx eom = TRUE;

}
/* ignore break/abort */

if ((rrla & OxCO) == OxCO) /* EOF with CRC error */

{
outpw(DOCON, 0XA3A4); /* STOP DMA 0 - no more Rx */
cha_in_buf0[0] = NULL_CHAR; /* make it a char string */
rx_eom = FALSE;

/* ignore break/abort */

OUtp(SCCA_CMD, 0x30);
outp(SCCA_CMD, 0x38);
break;

default:
/* Error */
break;

} /* End of SWITCH(rr2b) */

/* Check for any pending ints, which will cause the entire SWITCH above
* to reiterate.
*/
inp(SCCA_CMD) ;
outp(SCCA_CMD, 3);
rr3a = inp(SCCA_CMD);

} while (rr3a != 0),

216

/* Send non-specific EOI to Interrupt Controller */
outpw(0xFF22, 0x8000);

/* End of sec isr() */

/***

* scca_wreg()

**

void scca_wreg(int reg, int value)

{
if (debug)

dprintCSCCA WR: %X = %X", reg, value);

outp(SCCA_CMD, reg) ;
Outp(SCCA_CMD, value);

} /* End of scca_wreg() */

*
* sccb_wreg()

it***/

void sccb_wreg(int reg, int value)
{

if (debug)
dprintC'SCCB WR: %X = %Xn, reg, value);

outp(SCCB_CMD, reg);
outp(SCCB_CMD, value);

} /* End of sccb_wreg() */

/**+

*
* scc_hunt)
*
A***/

void scc_hunt(void)

{
unsigned long inti;

dprint("Entering Hunt Mode");

OUtp (SCCA_CMD, 3) ;
outp(SCCA_CMD, 0xD8); /* Disable receiver */
OUtp (SCCA_CMD, 3) ;
outp(SCCA_CMD, 0xD9); /* Enable receiver & enter Hunt mode */

for (i = 0; i < OxOOOlFFFFL; i++)

{
if ((i%0x3FFFL) == 0)

dprint(".");

if (!(inp(SCCA_CMD) & 0x010))
break;

}

if (inp(SCCA_CMD) St 0x010)
dprint("Sync (Flag) not detected, still in Hunt Mode\n");

else
dprint("Sync (Flag) detected!\n") ;

} /* End of scc_hunt() */

End of scc.h, scc.c

217

scenario.h, scenario.h

*
* SCENARIO.H

*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What

*

* SCENARIO.C

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date Who What
* + ,
*

#include "gen_defs.h"

#define SCENARIO
#include "cmd-h"
#undef SCENARIO

End of scenario.h, scenario.c

218

spacket.h, spacketx

*
* SPACKET.H
*

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Homing (Jah)
*
* Revision History:
* =================
* Date Who What
* + _ +

*******+****•***+*+*/

* SPACKET.C

*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
* • *
* Revision History:
* =================
* Date Who What
* + +
+

#include "gen_defs.h"

#define SPACKET
#include "spacket.h"
#undef SPACKET

End of spacket.h, spacket.c

219

startup.asm

*
* 80186 C Startup
*
* This is the beginning of ROM code for PANSAT.

*
* Revision History
+

* When Who What
* + +
* 28 March 1996 Jah Adopt for Pansat DCS
*

FALSE equ 0
TRUE equ 1

*
* MACRO: transmit
*

transmit MACRO
LOCAL transmit_wait

mov bx, ax

transmit_wait:
in al, SCCB_CMD
and al, 4
j z t ransmi t_wai t

mov ax, bx
out SCCB_DATA, al

*
* MACRO: DELAY
*

delay MACRO delay_time
LOCAL delay_loop

mov ex, delay_time

delay_loop:
dec ex
jnz delay_loop

ENDM

*
* MACRO: DISPLAY
*

display MACRO
LOCAL displayl
LOCAL display2

shr ax, cl
and al, OFh
emp al, 9
jb displayl
add al, 037h ,-adjust A-F
jmp display2

displayl:
add al, '0' ,-adjust 0-9

display2:
transmit

220

Specify stack size.

STACK SIZE EQÜ 800H ,-defined in WORDS (2 bytes) = 4k bytes

Place EXTRN statements for interrupt handling routines outside
of all SEGMENT/ENDS pairs.

For example, suppose you have an interrupt handling routine written in C
with the function name int_hdlr().
In order for you to reference the routine in this file, you should declare
_int_hdlr as an external reference (note that the C compiler prefixes an
underscore character to the function name) . The declaration should be
placed outside of all SEGMENT/ENDS pairs as follows:

EXTRN _int_hdlr:FAR
Refer to the sample code below that initializes the interrupt vector table.

The primary function of the start-up code is to set up the run-time
environment before passing control to C function main() .
The start-up code performs the following functions:
1) Initialize hardware and check RAM.
2) Copy initializers from ROM to RAM to setup initialized program variables

to proper initial values.
3) Zero all uninitialized program variables.
4) Initialize interrupt vector table, if necessary.
5) Setup data segment.
6) Setup stack segment.
7) Pass control to C function main().

PUBLIC acrtused
 acrtused EQU

The symbol acrtused has to be in lower-case. Starting from version 4,
when the Microsoft C optimizing compiler compiles a C file, it places an
external reference to this symbol in the object file. The public definition
of acrtused is contained in an object module called crtO. This module is
placed in the Microsoft C run-time library file. This module contains the
start-up code for the DOS environment. So when you link your C object files
with the run-time library file, the linker will extract the start-up object
module from the run-time library file to satisfy the external references.
As a result, the start-up code for DOS environment will be included in the
linker output.
If you do not make use of any function supplied in the run-time library
file, you do not link with the library file at all. Then you have to
include a public definition of acrtused in this file to resolve all the
external references in the C object files.
Even though you are building an application for an embedded environment,
sometimes you may want to link with the run-time library file. The reason
is that the run-time library file contains both DOS-dependent functions,
such as printff), and DOS-independent functions, such as strcpyl). If you
want to make use of certain DOS-independent functions that are contained in
the run-time library file, you would link with the library file. If the
link map shows that the linked module contains the crtO module, you know
that you have linked in some DOS-dependent functions from the run-time
library file.
Make sure you specify this start-up file as the first object file
in the linker command line, then the other object files and place the
modified combined run-time library file as the last file.

The following memory map shows a typical run-time environment of an embedded
application developed using the Microsoft C optimizing compiler.
It will help you understand the start-up code presented in this file.
The naming convention of class names presented here conforms with the
Microsoft C optimizing compiler, version 4 and up. The names enclosed in
single quotes are class names of segments.

High address

I I I
| FFFF:0 <-- Bootstrap code (JMP FAR PTR START_)

[FAR_DATA] | * This area of ROM contains initializers that

221

I
I
R
0
M

I
| _etext

I
| _start_
- START

end

edata

_bdata

ehbss

_bhbss

efbss

_bfbss

efdata

[CONST]

[DATA]

[DATA_BEG]

' CODE_END'

'CODE'

'STACK'

'BSS_END'

'BSS'

' DATA_END'

■CONST'

'DATA'

'DATA BEG'

' HUGE_BSS_END'

'HUGE BSS'

1 HUGE_BSS_BEG'

'FAR BSS END'

'FAR_BSS'

'FAR BSS BEG'

' FAR_DATA_END'

'FAR_DATA'

'FAR DATA BEG'

are used by start-up routine to initialize
segments with these class names in RAM at
power-up.
(The INITDATA control causes the PROM86
utility to place initializers between address

v labels _bdata and _edata and between _bfdata
<-- and _efdata in this area of ROM)
< This class contains only one segment of zero

length. Initializers are located at _etext.
<-- Text segments with class name CODE.

-- End of DGROUP (size of DGROUP <= 64K bytes)
This class contains the stack.

This class contains uninitialized data.

These three classes of segments are to be
initialized with initializers in ROM
by start-up routine at power-up.

Start of DGROUP

-- This class contains uninitialized data.

This class contains uninitialized data.

-- This class contains initialized data.

0:0
Low address

| <-- The interrupt vector table should be
initialized by start-up routine at power-up.

It is important to maintain the order of SEGMENTS/ENDS pairs as shown
below.

Text segments all have class name CODE. They contain program code
which is machine instructions generated by the compiler.

Data segment« with class names DATA_BEG, DATA, CONST, BSS and STACK
belong to a group named DGROUP. Since these segments belong to
a group, it to", lows that the total memory space occupied by them
cannot exceed t4K bytes.

The object fil*s may contain data segments with class names
FAR_DATA, FW BS5 and HUGE_BSS.
These classr* c! ertjments are generated by the Microsoft C
optimizing comrilci to support 'far' and 'huge' data objects.
Check your C manual for details.

Data segments with class names FAR_BSS and HUGE_BSS contain
'far' and 'hurjf uninitialized data, respectively. These segments
do not belong tc any group. They should be located before
the group DGROUP in the RAM space of your target system. The
advantage of locating these segments before DGROUP is that you may
use the memory space from the end of STACK segment to the end of
RAM as heap to implement your own memory allocation scheme.

For 'huge' data objects, multiple segments may be generated by the
C compiler to hold a single data object that is greater than 64K
bytes in size. These segments must be located together in proper
order.

222

Data segments with class name FAR_DATA contain 'far' and 'huge'
initialized data. They should also be located before the group
DGROUP in the RAM space of your target system.

When you prepare data file for programming eprom, the initializers
for segments with class names DATA_BEG, DATA, CONST and FAR_DATA
have to be placed in ROM addresses behind the CODE_END class.
The INITDATA control of PROM86, version 5.2 and up, performs this
operation for you. At power-up, the start-up routine will copy these
initializers from ROM to initialize the appropriate variables in RAM.

In order to make use of the INITDATA control in PR0M8S, you
must preserve the following public labels in this start-up file:
_bfdata - beginning of initializers in FAR_DATA class
_efdata - end of initializers in FAR_DATA class
__bdata - beginning of initializers in DGROUP group
_edata - end of initializers in DGROUP group
_etext - end of code

If you want PROM86 to determine the extraction address range,
i.e. the ADDRESSES option is not specified in PROM86 v6.0, you must
preserve the public label _start_ in this start-up file.

In addition to the above labels, the routine in this start-up file
uses the following public labels:
_end - end of uninitialized data in BSS class
_bfbss - beginning of uninitialized data in FAR_BSS class
_efbss - end of uninitialized data in FAR_BSS class
_bhbss - beginning of uninitialized data in HUGE_BSS class
ehbss - end of uninitialized data in HUGE BSS class

**
**

Segment declarations

* BEGFDATA

BEGFDATA SEGMENT PARA PUBLIC • FAR_DATA_BEG'

PUBLIC _bfdata
_bfdata LABEL BYTE ; This label marks the beginning of initialized data

; in FAR_DATA class.
BEGFDATA ENDS

*
* FAR DATA START

FAR_DATA_START SEGMENT PARA PUBLIC 'FAR_DATA'
FAR DATA START ENDS

By default, the locator places segments with the
same class name together.
The purpose of the FAR_DATA_START segment is to cause the locator
to locate all segments with class name FAR_DATA that contain
initialized variables between the BEGFDATA and ENDFDATA segments.

EMULATOR_DATA segment para public 'FAR_DATA'
; Segment contains data for the floating point emulator.
EMULATOR DATA ends

*
* ENDFDATA

ENDFDATA SEGMENT PARA PUBLIC 'FAR DATA END'

PUBLIC _efdata
efdata LABEL BYTE This label marks the end of initialized data

223

; in FAR_DATA class.
ENDFDATA ENDS

*
* BEGFBSS
*

BEGFBSS SEGMENT PARA PUBLIC •FAR_BSS_BEG'

PUBLIC _bfbss
_bfbss LABEL BYTE ; This label marks the beginning of uninitialized

; data in FAR_BSS class.
BEGFBSS ENDS

*
* FAR_BSS_START
*

FAR_BSS_START SEGMENT PARA PUBLIC ' FAR_BSS '
FAR BSS START ENDS

By default, the locator places segments with the same class name
together.
The purpose of the FAR_BSS_START segment is to cause the locator to locate
all segments with class name FAR_BSS between the BEGFBSS and ENDFBSS
segments.
Segments with class name FAR BSS contain uninitialized variables.

*
* ENDFBSS
*

ENDFBSS SEGMENT PARA PUBLIC ■FAR_BSS_END'

PUBLIC _efbss
_efbss LABEL BYTE ; This label marks the end of uninitialized data

; in FAR_BSS class.
ENDFBSS ENDS

*
* BEGHBSS
*

BEGHBSS SEGMENT PARA PUBLIC ■HUGE_BSS_BEG'

PUBLIC _bhbss
_bhbss LABEL BYTE ; This label marks the beginning of uninitialized

; data in HUGE_BSS class.
BEGHBSS ENDS

*
* HUGE_BSS_START
*

HUGE_BSS_START SEGMENT PARA PUBLIC 'HUGE_BSS'
HUGE BSS START ENDS

By default, the locator places segments with the same class name
together.

The purpose of the HUGE_BSS_START segment is to cause the locator to locate
all segments with class name HUGE_BSS between the BEGHBSS and ENDHBSS
segments.
Segments with class name HUGE_BSS contain uninitialized variables.

.***

224

* ENDHBSS
*

ENDHBSS SEGMENT PARA PUBLIC ■ HUGE_BSS_END'

PUBLIC _ehbss
_ehbss LABEL BYTE ; This label marks the end of uninitialized data

; in HUGE_BSS class.
ENDHBSS ENDS

*
* DGROUP segments
*

; DGROUP GROUP NULL, _DATA, CONST, ENDDATA, J3SS, ENDBSS, STACK

DGROUP GROUP NULL,_DATA, PSP, CDATA, CONST, HDR, MSG, PAD.EPAD, ENDDATA, _BSS, ENDBSS, STACK

*
* NULL
*
* This segment contains 8 bytes of zeros. If a (DS:0) null pointer assignment
* occurs, these byte locations will be overwritten. You may implement your
* own routine to check for null pointer assignment.
*

NULL SEGMENT PARA PUBLIC 'DATA_BEG'

PUBLIC _bdata ; This label marks the beginning of initialized data.
_bdata LABEL BYTE

DB 8 DUP (0)

NULL ENDS

*
* _DATA
*
* Segment with class name DATA contains initialized variables.
*

_DATA SEGMENT WORD PUBLIC 'DATA'
; segment contains initialized variables

PUBLIC fac
 fac DQ 0 ;FP Accumulator

PUBLIC _errno
_errno DW 0 ;Initial Error Code
DATA ENDS

PSP SEGMENT PARA PUBLIC 'DATA' ; MUST BE PARAGRAPH ALIGNED
; Segment contains data for initializing floating point emulator.
PSP ENDS

CDATA SEGMENT WORD COMMON 'DATA'
DW 0 ; DO NOT DEFINE ANY VARIABLE IN THIS SEGMENT

 fpinit LABEL DWORD
PUBLIC fpinit

CDATA ENDS

*
* CONST
*
* Segment with class name CONST contains constants.
*

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

HDR SEGMENT BYTE PUBLIC 'MSG'
DB '<<NMSG>>'

HDR ENDS

HEADER SEGMENT OF ERROR MESSAGE STRINGS

225

MSG SEGMENT BYTE PUBLIC 'MSG' ; ERROR MESSAGE STRINGS
MSG ENDS

PAD SEGMENT BYTE COMMON 'MSG' ; ERROR MESSAGE PADDING MARKER
DW -1

PAD ENDS

EPAD SEGMENT BYTE COMMON 'MSG' ; END OF PADDING MARKER
DB -1

EPAD ENDS

t»*****,»**^*»^
*
* ENDDATA

ENDDATA SEGMENT PARA PUBLIC 'DATA_END'

PUBLIC _edata

_edata LABEL BYTE ; This label marks the end of initialized data.

ENDDATA ENDS

***t + lMrltltlk41n##

*
* _BSS
*
* Segment with class name BSS contains uninitialized variables.
*
***************************** ******************************4*tlttlttlillllittt

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

*
* ENDBSS
*
»»i»*»******,,,,,,*,,*^,

ENDBSS SEGMENT WORD PUBLIC 'BSS_END'

PUBLIC _end

_end LABEL BYTE ,- This label marks the end of uninitialized data.
ENDBSS ENDS

**
*
* STACK
*
**

STACK SEGMENT PARA STACK 'STACK'

DW STACK_SIZE DUP (?)

Stack_top LABEL WORD

STACK ENDS

»««••»mtminmiHmjnunumMittntm»»,,»,,»,,,»,,,,,,,,,,,,,,,

* _TEXT
*
**

_TEXT SEGMENT PARA PUBLIC 'CODE'
EXTRN _main:NEAR ;C main()

ASSUME CS:_TEXT
ASSUME DS:DGROUP, SS:DGROUP

,-* 80186 Initialization

UMCS equ OPFAOh ,-upper memory chip select
UMCS_DATA equ 0F038h ; start of EPROM F000:0, 64K

226

; external Ready ignored, 0 wait states

Lower Memory Chip Selects are NOT used

PACS equ 0FFA4h
PACS_DATA equ 0000h PCSO (base) = 0, bus ready must be active

to complete a bus cycle, no wait states
inserted in bus cycle

MMCS equ 0FFA6h
MMCS_DATA equ 00000h ,-Start = 0:0, 512K in size

MPCS equ 0FFA8h
MPCS_DATA equ 04087h 512K block, + PCS5/6

PCSx go active for i/o bus cycles,
requires bus ready be active to complete
bus cycle (applies to PCS4-PCS6),
0 wait states inserted for PCS4-PCS6

PUBLIC START_
START_:
PUBLIC _start_
start :

;Must be paragraph aligned (i.e. offset is 0)
and the address where program code starts.

8018S Initialization

mov dx, MMCS
mov ax, MMCS_DATA
out dx, ax

mov dx, MPCS
mov ax, MPCS_DATA
out dx, ax

mov dx, PACS
mov ax, PACS_DATA
out dx, ax

or the test board w/ separate 1.8MHz SCC clock
mov dx, 0FFA2h
mov ax, 03FF8h
out dx, ax
mov dx, 0FFA4h
mov ax, 0037h
out dx. ax
mov dx. 0FFA6h
mov ax, 041F8h
out dx. ax
mov dx, OFFASh
mov ax. 0A038h
out dx, ax

******************* ***************** r**************** ********************

* Init Peripheral Control Bus
* 8255 (PPI) at OxCO, 0xC2, 0xC4, 0xC6
* Mode 2: Port A = bidirectional using Port C as handshaking
* Port B = Address selections and Read & Write strobes
* Port C = Handshaking lines
*
* After PPI init, Port B is set to OxCO which sets the Read and Write
* lines high, which clears them since they are active low signals.
*

PCB_PPI_BASE equ
PCB_PPI_PortA equ
PCB_PPI_PortB equ
PCB_PPI_PortC equ
PCB_PPI_Ctrl equ

; Port C single bit set/reset

0100h
PCB_PPI_BASE + 0
PCB_PPI_BASE + 2
PCB_PPI_BASE + 4
PCB PPI BASE + 6

PCB Porte SetO equ Olh
PCB Porte Reset0 equ 00h
PCB Porte Setl equ 03h
PCB Porte Resetl equ 02h
PCB Porte Set2 equ 05h
PCB_PortC_ Reset2 equ 04h

mov dx, PCB PPI Ctrl
mov al. OCOh
out dx, al

Sets Port C,
Sets Port C,
Sets Port C,
Sets Port C,
Sets Port C,
Sets Port C,

bit
bit
bit
bit
bit
bit

;Setup via the Control port

227

to 1
to 0
to 1
to 0
to 1
to 0

mov dx, PCB PPI PortB
out dx, al

mov dx, PCB PPI PortA
sub al. al
out dx, al

mov dx, PCB PPI Ctrl
mov al. PCB Porte Setl
out dx, al
mov al, PCB Porte SetO
out dx, al

;Output to port b (Read & Write HIGH)

/Output to port a (Data = all zeros)

,-PCl = PPI Input Strobe

/Modem Power (Active LOW -> keep it OFF)

Clear power settings on EPS (Ports 0 and 2)

;11 10 1000

mov
mov

dx,
al,

PCB_PPI_PortA
0

out dx, al

mov dx, PCB PPI PortB
mov al, 0E8h
out dx, al

mov al, 0A8h
out dx, al

mov al. 0E8h
out dx, al

mov dx, PCB PPI PortB
mov al, 0C8h
out dx, al

mov al, 088h
out dx, al

mov al, 0C8h
out dx, al

;10 10 1000

;11 10 1000

;11 00 1000

;10 00 1000

ill 00 1000

** ******

Init 85C30 (Channel B) for:
asynchronous, 9600 bps, no parity, 1 stop bit, 8 bits/char

*** t****** *********

SCCB_CMD
SCCB_DATA
SCCA_CMD
SCCA_DATA

BTABLE_LEN
ATABLE LEN

equ 0
equ 4
equ 2
equ 6

Channel B Command
Channel B Data
Channel A Command
Channel A Data

equ (OFFSET sccb_table_end) - (OFFSET sccb_table)
equ (OFFSET scca_table_end) - (OFFSET scca_table)

I0CON equ 0FF38h
I0CON_INIT equ OOCh
INT0_ISR equ 12

;Edge-triggered, turned OFF, priority 4

/public init_scca
,-init_scca:

in

mov
mov

public table_loada
table_loada:

mov
out
inc
dec
jnz

init_sccb:
in

mov
mov

public table_loadb
table loadb:

al, SCCA_CMD ;read status

bx, ATABLE_LEN
bp, OFFSET scca table

al, cs:[bp]
SCCA_CMD, al
bp
bx

table loada

al, SCCB CMD /read status

bx, BTABLE_LEN
bp, OFFSET sccb_table

228

mov
out
inc
dec

al, cs:[bp]
SCCB_CMD, al
bp
bx

jnz table loadb

public table loadb done
table_loadb done:

mov al, '*'
transmit

jmp edac done
jmp init edac

scca_table:
db 009h
db OCOh

db 004h
db 020h

db OOlh
db OOOh

db 002h
db OOOh

db 003h
db 0C8h

db 005h
db OSlh

db 006h
db OOOh

db 007h
db 07Eh

db OOFh
db 091h

db 007h
db 063h

db 009h
db 022h

db 00 Ah
db OAOh

db OOBh
db 009h
db 056h

db OOCh
db 45

db OODh
db OOOh

db OOEh
db OOOh
db 002h

db OOEh
db 005h
db 007h

db 003h
db 0D9h

db OOSh
db 069h

db OOOh
db 080h

db OOOh
db 010h

db OOOh
db OlOh

; point to WR9
;force hardware reset

;point to WR4
;xl clock, SDLC mode, SYNC mode

,-point to WR1
,-disable DMA and interrupts

,-point to WR2
;zero interrupt vectors

,-point to WR3
,-Rx 8 bits, Rx CRC enabled

,-point to WR5
,-Tx 8 bits, Tx CRC enabled

,-point to WR6
;SDLC address field

,-point to WR15
,-Enable Int: Break/Abort, Sync/Hunt

,-point to WR7
,-Extended Read, get CRC bits, AUTO RTS, EOM, TX flag

,-point to WR9
;No vector and no INTACK

,-point to WR10
;CRC preset=l, NRZI, Flag idle

,-point to WR11
;TxCK=TRxC, RxCK=RTxC

;TxCLK=BRG, RxCLK=BRG, TRxC=OUtput using BRG

,-point to WR12
,-TCL: to give 78.125 KHz clock

,-point to WR13
,-TCH

,-point to WR14
,-BRG=RTxC pin

;BRG=PCLK

/point to WR14
,-Enable BRG, BRG=RTxC pin, DTR/Request Function

,-Enable BRG, BRG=PCLK, DTR/Request function

,-point to WR3
,-Enable RX, CRC, enter hunt

,-point to WR5
,-Enable TX, CRC

,-point to WRO
;Reset TxCRC

,-point to WRO
;reset ext/status

,-point to WRO
,-reset ext/status

229

db OOlh
db 0F9h
db 0F8h

db 009h
db 02Ah

/point Co WR1
;DMA Request Mode, Int on Special Rx, EXT INT enable

;DMA Request Mode, Int on Special Rx

,-point to WR9
;enable interrupts

scca table end:

sccb_table:
; based on SCCB using PCLK

db 04h, 044h

db

db
db

db
db
db
db

db
db

db
db

db
db

db

Olh, 012h

03h, OCOh
OSh, 060h

OBh, 056h
OCh, 016h
OCh, OAh
OCh, 04h

ODh, OOOh
OEh, 003h

03h, OClh
05h, 06Ah

00h, 010h
00h, 028h

09h, 02Ah

at 7.3728 MHz, xl6 clock mode, at 38400 b/s
;WR4, xl6 clock, 8 bit sync, 1 stop bit, no parity

;WR1, INT on all Rx or special, Int on Tx empty

;WR3, Rx: 8 bits/char, Rx disable
;WR5, Tx: 8 bits/char, Tx disable

;WR11, Rx: BRG, Tx: BRG, TRxC: BRG
;WR12, lower TC ; this is for 9600 b/s

;WR12, lower TC ; this is for 19.2 kb/s
;WR12, lower TC ; this is for 38.4 kb/s

;WR13, upper TC
;WR14, BRG use PCLK, set DTR, enable BRG

;WR3:
;WR5:

+ Rx enable
+ Tx enable, /RTS

;WR0: Reset EXT/Status Interrupts
;WR0: Reset TxINT Pending

;WR9: Enable Interrupts

; based on SCCB using BRG, with 1.8432 MHz clock, with xl6 clock mode, ® 9600 bps
;WR4, xl6 clock, 8 bit sync, 1 stop bit, no parity db 04h, 044h

db Olh, 12h

db 03h, OCOh
db 05h, 060h

db OBh, 056h
db OCh, 004h
db ODh, 000h
db OEh, OOlh

db 03h, OClh
db 05h, 068h

;WR1, INT on all Rx or special, Int on Tx empty

;WR3, Rx: 8 bits/char, Rx disable
;WR5, Tx: 8 bits/char, Tx disable

WR11, Rx: BRG, Tx: BRG, TRxC: BRG
WR12, lower TC
WR13, upper TC
WR14, set DTR and enable baud gen

;WR3:
;WR5:

+ Rx enable
+ Tx enable

db 00h, 010h
db 00h, 028h

db 09h, 02Ah
sccb table end:

;WR0: Reset EXT/Status Interrupts
;WR0: Reset TxINT Pending

;WR9: Enable Interrupts

*
* Init EDAC

INT2 = Hard Error
INT3 = Soft Error

** ***********

EXTRN edac soft isr NEAR ;C routine
EXTRN _edac_ hard isr :NEAR ;C routine

12 CON equ 0FF3Ch
I2CON INIT equ OlEh
13 CON equ 0FF3Eh
I3CON INIT equ OlFh
IMASK equ 0FF28h
INT2 ISR equ 14
INT3_ISR equ 15

/Level-triggered, turned OFF, priority 6

;Level-triggered, turned OFF, priority 7

public init_edac
init_edac:
;EXTRN ad isr:NEAR ;C ad isr()

dx, I3CON

230

mov ax, I3C0N_INIT
out dx, ax

mov dx, I2C0N
mov ax, I2C0N_INIT
out dx, ax

mov al, 'E'
transmit

/Perform the Write/Read Test of 0x55AA
;WRITE

sub bx, bx
edac_testl_loopa:

mov es, bx
sub di, di
mov ex, 08000h
mov ax, 055AAh
eld
rep stosw
mov bx, es
add bx, 01000h
emp bx, 08000h
jb edac_testl_loopa

;READ-BACK
sub bx, bx

edac_testl_loopb:
mov es, bx
sub di, di
mov ex, 08000h

edac_test__loopbl:
emp ax, WORD PTR es:[di]
jnz edac_testl_error
loop edac_test_loopbl
mov bx, es
add bx, 01000h
emp bx, 08000h
jb edac_testl_loopb

/Passed the Write/Read of 0x55AA

;Now perform the Write/Read Test of Mod-257
,- WRITE

sub bx, bx
edac_test2__loopa:

mov es, bx
sub di, di
sub ax, ax ,-start w/ 0, count to 257, start over w/ 0
eld

edac_test2_loopal:
mov BYTE PTR es: [di] , al ,-move just a byte
inc ax ,-inc the whole word
emp ax, 256
jb edac_test2_skipl
sub ax, ax ;start over the count

edac_test2_skipl:
inc di ,-next location to fill
jnz edac te«t2_loopal ,-not finished w/ 64k block
mov bx, *>c
add bx. c1000h
emp bx, ceOCCh
jb edar_ te»*.;_loopa ;keep with same count in AX

/READ-BACK
sub bx. tx

edac_test2_loopb:
mov es, tx
sub di. dl
sub ax, ax ,-start w/ 0, count to 257, start over w/ 0
eld

edac__test2_loopbl:
emp BYTE PTR es: IdiJ , al /compare just a byte
jnz edac_test2_error
inc ax ;inc the whole word
emp ax, 258
jb edac_test2_skip2
sub ax, ax /start over the count

edac_test2_skip2:
inc di /next location to fill
jnz edac_test2_loopbl/not finished w/ 64k block

231

mov bx, es
add bx, 01000h
cmp bx, 08000h
jb edac_test2_loopb ;keep with same count in AX
jmp edac_vectors

/Passed Write/Read Test of Mod-257

edac_testl_error:
mov al, '1'
jmp startup_error

edac_test2_error:
mov al, ' 2 '
jmp startup_error

edac_vectors:
;Setup Interrupt Vectors for EDAC

sub ax, ax
mov es, ax
mov ax, OFFSET _edac_hard_isr
mov es : WORD PTR INT2_ISR*4, ax
mov ax, SEG _edac_hard_isr
mov es: WORD PTR INT2_ISR*4+2, ax

sub ax, ax
mov es, ax
mov ax, OFFSET _edac_soft_isr
mov es : WORD PTR INT3_ISR*4, ax
mov ax, SEG _edac_soft_isr
mov es: WORD PTR INT3 ISRM+2, ax

,-Segment of INT2 vector

;Base of INT2 vector

;Segment of INT3 vector

;Base of INT3 vector

/Allow the interrupts to occur (to the Interrupt Controller)
,-Note: Interrupts are still off to the microprocessor

mov dx, IMASK

mov ax, 03Fh ;Allow INT2 and INT3 interrupts
; CPU 'cli' is still imposed!

mov ax, OFFh ;Mask OFF all interrupts
out dx, ax

;Reset any EDAC errors
mov dx, PCB_PPI_Ctrl
mov ax, PCB_PortC_Reset2 /EDAC Error Acknowledge (Active LOW)
out dx, ax
mov ax, PCB_PortC_Set2
out dx, ax

mov al, 'e'
transmit

edac_done:
;Setup SCC INTO Interrupt Vector and Configure Controller
,-*** DO NOT DO THIS BEFORE THE EDAC TEST OCCURS SINCE THE INTERRUPT VECTORS ARE TRASHED!
EXTRN _SCC_isr:NEAR ;C SCC_isr()

sub ax, ax
mov es, ax
mov ax, OFFSET _scc_isr
mov es : WORD PTR INT0_ISR*4, ax
mov ax, SEG _scc_isr
mov es:WORD PTR INT0_ISR*4+2, ax
mov dx, 10 CON
mov ax, I0CON_INIT
out dx, ax

/Segment of INTO vector

/Base of INTO vector

***m
*
* Init Timer for Clock
*
* Timer 2 Interrupt used, INT 13h (19)

*** **************************

T2CON
T2CNT
T2CMP
T2 ISR

equ
equ
equ
equ

0FF66h
0FF60h
0FFG2h
013h

EXTRN _clock_isr:NEAR
public set timer

;C clock_isr()

232

set_timer:
mov
mov
mov
mov
mov
mov

ax, 0
es, ax
ax, OFFSET _clock_isr
es:WORD PTR 013h*4, ax
ax, SEG _clock_isr
es:WORD PTR 013h*4+2, ax ;Base of TMR2 vector

mov
sub
out

dx, T2CNT
ax, ax
dx, ax ;Counter Register

mov
mov
out

dx, T2CMP
ax, 30720
dx, ax

;Max Count

mov
mov
out
mov
out

dx, T2C0N
ax, 06001h
dx, ax
ax, OEOOlh
dx, ax

;no inhibit, INT, Continuous

;same as above, but Enable as well

* Init A/D Interrupt Service
*
* INT1 = A/D Interrupt

r**

I1CON equ 0FF3Ah
I1C0N_INIT equ OIDh
INT1_ISR equ 13
EXTRN ad isr:NEAR

;Level-triggered, turned OFF, priority 5

public set_ad
set_ad:

mov
mov
mov
mov
mov
mov

ax, 0
es, ax
ax, OFFSET _ad_isr
es:WORD PTR INT1_ISR*4, ax
ax, SEG _ad_isr
es:WORD PTR INT1 ISR*4+2, ax ,-Base of AD ISR vector

**
*
* Perform variable initialization.
* Initializers are copied from ROM to RAM.
*
**

PUBLIC _init_begin
_init_begin:

eld

;Jah
mov
transmit

al, 'I'

Transfer Count
MOV AX, OFFSET DGROUP :_edata ; Transfer counter
CMP AX,0
JZ no_init_data
MOV CX,AX

RAM Destination addres
MOV AX,SEG _bdata
MOV ES,AX
MOV DI,0

Destination ES:[DI]
Start of initialized variable area in RAM

ROM Source address
MOV AX, SEG _etext
MOV DS,AX
MOV SI,0

Source DS:[SI]
Start of initializer storage in ROM

REP MOVSB

mov al,
transmit

Begin byte transfer from ROM to RAM

233

no_init_data:

; Clear uninitialized data area in DGROUP group

mov al, 'U'
transmit

MOV CX,OFFSET DGROUP:_end ; End of 'BSS' class in RAM
MOV DI,OFFSET DGROUP:_edata ; Start of 'BSS' class in RAM
SUB CX,DI ; Size of 'BSS' class in bytes
JCXZ no uninit data

MOV AX,0
REP STOSB

Initialize to 0

mov al,
transmit

no_uninit_data:
Initialize FAR_DATA data in RAM with initializers stored in ROM

; Transfer Count
MOV AX,SEG _bfdata
MOV CX,SEG _efdata
SUB CX,AX
JCXZ loopend
MOV DX,CX

; Destination
MOV ES,AX
MOV DI,0

; Source
MOV AX,SEG _etext ; Source DS:[SI]
MOV DS,AX ; Start of FAR_DATA initializer storage in ROM
MOV SI,OFFSET DGROUP:_edata ; _edata is paragraph aligned

; Normalize Source Pointer
MOV AX,SI
MOV CL,4
SHR AX,CL
MOV BX,AX
MOV AX,DS
ADD AX,BX
MOV DS,AX
MOV SI,0
MOV AX,DX

loopbegin:
CMP AX,1000H
JBE lastxfer
MOV CX,8000H
SUB AX,1000H
JMP SHORT xferbegin

lastxfer:
MOV CL,3
SHL AX,CL
MOV CX,AX
MOV AX,0

xferbegin:
REP MOVSW

CMP AX,0
JE loopend

Compute size of FAR_DATA segments in paragraphs
No FAR_DATA class
Saves transfer count in paragraphs

Destination ES:[DI]
Start of FAR DATA class in RAM

Process base of source pointer

Divide by 16

Adjust base of source pointer
Offset of source pointer is zero
Restore transfer count in paragraphs

More than G4K bytes to transfer?
No
Prepare to transfer 8000H words

Number of WORDS = paragraph * 8
Set up transfer count in terms of WORDS
No more to transfer

; Transfer WORDS from ROM to RAM
Any more data to transfer?
No

Adjust Source and Destination pointers
MOV BX,AX
MOV AX,DS
ADD AX.1000H
MOV DS,AX
MOV AX,ES
ADD AX.IOOOH
MOV ES,AX
MOV SI,0
MOV DI,0
MOV AX,BX
JMP loopbegin

loopend:

Saves transfer count

Restores transfer count

Clear uninitialized data area in FAR_BSS class
Transfer Count

MOV AX,SEG _bfbss
MOV CX,SEG _efbss
SUB CX,AX
JCXZ loopfend

Destination
MOV ES,AX

Compute size of FAR_BSS segments in paragraphs
No FAR BSS class

Destination ES:[DI]

234

MOV DI,0
; Transfer Count

MOV AX,CX
loopfbegin:

CMP AX,1000H
JBE lastfxfer
MOV CX,8000H
SÜB AX.1000H
MOV BX,AX
JMP SHORT xferfbegin

lastfxfer:
MOV CL,3
SHL AX, CL
MOV CX,AX
MOV AX,0
MOV BX,AX

xferfbegin:
MOV AX,0

REP STOSW
MOV AX.BX
CMP AX,0
JE loopfend
; Adjust Destination
MOV AX,ES
ADD AX,1000H
MOV ES,AX
MOV DI,0
MOV AX,BX
JMP loopfbegin

loopfend:

; Start of FAR BSS class in RAM

More than 64K bytes to initialize?
No
Prepare to transfer 8000H words

Saves transfer count

Number of WORDS = paragraph * 8
Set up transfer count in terms of WORDS
No more to transfer
Saves transfer count

; Initialize WORDS to zero
Restore transfer count
Any more data to transfer?
No

pointers

; Restore transfer count

Clear uninitialized data area in HUGE_BSS class
Transfer Count

MOV AX SEG bhbss
MOV CX SEG ehbss
SUB CX AX
JCXZ loophend ,

; Destination
MOV ES AX
MOV DI 0

; Transfer Count
MOV AX CX

loophbegin:
CMP AX 1000H
JBE lasthxfer ,
MOV CX 8000H
SUB AX 1000H
MOV BX AX
JMP SHORT xferhbegin

lasthxfe r:
MOV CL 3
SHL AX CL
MOV CX AX
MOV AX 0
MOV BX AX ,

xferhbeg in:
MOV AX 0

REP STOSW
MOV AX BX
CMP AX 0
JE loophend ,

Compute size of HUGE_BSS segments in paragraphs
No HUGE_BSS class

Destination ES:[DI]
Start of HUGE BSS class in RAM

More than 64K bytes to initialize?
No
Prepare to transfer 8000H words

Saves transfer count

Number of WORDs = paragraph * 8
Set up transfer count in terms of
No more to transfer
Saves transfer count

,- Initialize WORDs to zer
Restore transfer count
Any more data to transfer?
No

; Adjust Destination pointers
MOV AX,ES
ADD AX,1000H
MOV ES,AX
MOV DI,0
MOV AX,BX ; Restore transfer count
JMP loophbegin

loophend:

PUBLIC _init_done
init done:

Initialize the interrupt vector table here

Interrupt types 0 to 4 are dedicated internal interrupts.
Type 0 - Divide-error
Type 1 - Single-step
Type 2 - Non-maskable interrupt
Type 3 - 1-byte INT instruction or Breakpoint
Type 4 - Overflow
Interrupt types 5 to 31 are reserved internal interrupts.

235

Interrupt types 32 to 25S are available for use.

For example:

The interrupt handling routine for vector 32 decimal is assumed to
be the C function: void interrupt far int_hdlr().
The statement declaring code label _int_hdlr as an external far procedure
has to be placed outside of all SEGMENT/ENDS pairs.
See the sample EXTRN statement above. It is behind the GROUP statement.
Below is the sample code to initialize an entry in the vector table:

TYPE32 EQU 32
MOV AX,0

MOV ES,AX /Reference base of interrupt vector table
MOV AX,OFFSET _int_hdlr
MOV ES:WORD PTR TYPE32*4,AX /Offset portion of vector 32
MOV AX,SEG _int_hdlr
MOV ES:WORD PTR TYPE32*4+2, AX /Base portion of vector 32

TYPEO EQU 0
MOV AX, 0

MOV ES,AX /Reference base of interrupt vector table
MOV AX, OFFSET cintDIV
MOV ES:WORD PTR TYPE0*4,AX /Offset portion of vector 0
MOV AX.SEG cintDIV
MOV ES:WORD PTR TYPE0*4+2,AX /Base portion of vector 0

/ Setup data and stack segment here before releasing control to _main

mov al, ' S'
transmit

public setup_main
setup_main:

mov ax, DGROUP

mov ds, ax /Setup data segment
ASSUME ds : DGROUP

mov ss, ax /Setup stack pointer
mov sp, OFFSET DGROUP:stack_top
ASSUME SS: DGROUP

,-FP emulator init function
mov al, 'F'
transmit

EXTRN alinit:FAR
CALL FAR PTR alinit
mov al, ■p'
transmit

/Reset the EDAC Hard and Soft Error Interrupts
mov dx, PCB_PPI_Ctrl
mov al, PCB_PortC_Reset2 ,-EDAC Error Acknowledge (Active LOW)
out dx, al
mov al, PCB_PortC_Set2
out dx, al

/Send non-specific EOI to Interrupt Controller
INT_EOI equ 0FF22h

mov dx, INT_EOI
mov ax, 08000h
out dx, ax

,-* Mask ON/OFF Interrupts to the Interrupt Controller
mov dx, IMASK
mov ax, OEEh /allow INTO, Timers
out dx, ax

/Ready to transfer control to the C run-time, enable interrupts,
mov al, ' M'

reset pointer

WRO: Reset EXT/Status Interrupts

WRO: Reset TxINT/Pending

WRO: Error Reset

transmit

in al, SCCB CMD
mov al, 010h
out
mov

SCCB_CMD,
al, 028h

al

out
mov

SCCB_CMD,
al, 030h

al

out SCCB_CMD, al

236

mov al, 038h
out SCCB_CMD, al ;WR0: Reset Highest IUS

PUBLIC before_main
before_main:

sti
call main ;Pass control to C main() in module dcs.c

PUBLIC _exit, exit
_exit LABEL FAR
 exit LABEL FAR
dcs_halt:

jmp dcs_halt

**
*
* startup_error
*
* This routine halts the processor after displaying the error message which
* consists of an exclamation point (!) followed by a number/letter.
*
* Error Codes:
* *1* EDAC RAM Test of 55AA failed
* ■ '2* EDAC RAM Test of Mod-257 failed

startup_error:

mov cl, al ; error code
mov al, '!'
transmit
mov al, cl
transmit
mov al, '@'
transmit

/First ES
mov ax, es
mov cl, 12
display

mov ax, es
mov cl, 8
display

mov ax, es
mov cl, 4
display

mov ax, es
display

mov al, *:'
transmit

;Now DI
mov ax, di
mov cl, 12
display

mov ax, di
mov cl, 8
display

mov ax, di
mov cl, 4
display

mov ax, di
display

sehlt:
jmp sehlt

* FP Support

237

Trap for missing floating-point software.
The floating point initialization routine (fpmath) will call this routine
when one of the following conditions occurs:
(1) 8087 floating point library (87.lib) is linked in but no 8087 coprocessor

is present, that is, floating point emulator library is not linked.

(2) Floating point i/o conversions are done, but no floating-point variables
or expressions are used in the program.

Default action is to halt the processor.
PUBLIC fptrap

^fptrap LABEL FAR

MOV AX,3 ; Identify label fptrap.
HLT

JMP fptrap

ERROR HANDLING

INT 21H called. Register AH contains the function code.

If function code is 00H, 25H, 35H or 4CH, the interrupt handler
will process the call.

For all other function codes, the interrupt handler will jump here.
Default action is to halt the processor.

PUBLIC doscalled

_doscalled LABEL FAR

If you want to ignore the dos call,

replace the following instructions.

MOV AX,4 ; Identify label doscalled
HLT

JMP doscalled
WITH:

EXTRN ignored:FAR

JMP FAR PTR ignored

This will cause the interrupt handler to ignore the dos call.

 ignore is an entry point back to the interrupt handler.

PROCEDURE cintDIV:

PUBLIC cintDIV

_cintDIV PROC FAR ; Divide by 0 interrupt handler.

MOV AX,5 ; User-defined error recovery routine.
HLT ; Identify label cintDIV.

JMP cintDIV

cintDIV ENDP

VARIABLE _errno:

For certain C run-time functions, when an error condition occurs within the

function, an error code will be placed in the _errno global variable.

If a function sets the _errno variable upon error, its reference page will

explicitly mention the _errno variable.

All of the error codes are described in the Microsoft C run-time library
reference manual.

The values of these error codes are listed in the errno.h include file.

FUNCTION matherr:

You may supply your own version of matherr function in your C program.

If you do, you can obtain a value from the type field of the exception

data structure which corresponds to the math error code listed in the

math.h include file. the Microsoft C run-time library reference

manual contains a detail description of the matherr fucntion and the
math error codes.

If you do not link in your own matherr function, the matherr function

included in the Microsoft C run-time library will be linked in.

The function simply returns a zero value.

If you link in your own version of the matherr function, it may perform

special error handling. if corrective action is taken and the
the return value should be nonzero.

PROCEDURE FF_MSGBANNER:

The FF_MSGBANNER procedure will be called when an error condition occurs
within in a math function and certain C run-time functions.
It writes the first part of run-time error messages to standard
error as follows:
■\r\nrun-time error '.

238

It is implemented as a null procedure here.

PUBLIC FF_MSGBANNER
_FF_MSGBANNER PROC NEAR

RET
FF MSGBANNER ENDP

PROCEDURE wrt2err:

The wrt2err procedure will be called when an error condition occurs
within in a math function and certain C run-time functions.
It takes a near pointer in BX (DS:BX) which points to a LSTRING which is
to be written to standard error. A LSTRING is a one-byte length followed
by that many bytes for the character string (as opposed to a null-
terminated string).
These LSTRINGs has the form of the first character being a capital letter
followed by four digits. For examples, 'R6001', 'M6101', etc. The
meaning of these error numbers are explained in detail in the Microsoft C
reference manual.
The wrt2err procedure is implemented as a null procedure here.

PUBLIC wrt2err
_wrt2err PROC NEAR

DS:BX points to the LSTRING.
RET

wrt2err ENDP

PROCEDURE NMSG_WRITE:

The NMSG WRITE procedure will be called when an error condition occurs
within in a math function and certain C run-time functions.
It searches the MSG segment for the address of a message string corresponding
to the error condition.
If a message string is found, DS:DX = string address, CX = string length.
You may process or ignore the error message string.

The follow table lists some of the error message numbers and the message strings:
253 ': MATH' ,13,10,•- floating-point error: ',0
101 'invalid',13,10,0
102 'denormal', 13,10, 0
103 'divide by 0',13,10,0
104 'overflow', 13,10, 0
105 'underflow',13,10,0
106 'inexact',13,10,0
107 'unemulated',13,10, 0
108 'square root',13,10,0
109 13,10,0
110 'stack overflow',13,10,0
111 'stack underflow',13,10,0
112 'explicitly generated',13,10,0

PUBLIC NMSG WRITE
_NMSG_WRITE PROC NEAR

PUSH BP
MOV BP,SP
PUSH DS
POP ES
MOV DX,WORD PTR [BP+4] ; DX = error message number
CMP DX.253
JE NOTFOUND

; But proce
ASSUME DS:DGR0UP

Skip error message no. 253,
s other error message numbers

MOV SI,OFFSET DGROUP:
TLOOP:

LODSW ;
CMP AX,DX
JE FOUND
INC AX
XCHG AX,SI
JZ NOTFOUND
XCHG DI.AX
XOR AX,AX
MOV CX, -1
REPNE SCASB
MOV SI,DI
JMP TLOOP

FOUND:
XCHG AX,SI
XCHG DX,AX
MOV DI, DX
XOR AX,AX
MOV CX, -1

MSG ; start of near messages

AX = current message number

Found error message string

At end and error message string not found

Skip until OH

Try next entry

SI = offset to string address
DS:DX = string address
Determine length of message string
String is terminated with byte Oh

239

REPNE SCASB ; ES = DS already
NOT CX

DEC CX ; CX = string length

; May include user-defined code here to output error message

; DS:DX = string address, CX = string length
NOTFOUND:

MOV SP.BP

POP BP

RET

NMSG WRITE ENDP

PUBLIC dataseg

 dataseg DW DGROUP

TEXT ENDS

EMULATOR_TEXT segment para public 'CODE'

public EmDataSeg

 EmDataSeg dw EMULATOR_DATA

EMULATOR TEXT ends

BOOTSTRAP SEGMENT AT OFFFFH

Cli

mov dx, UMCS
mov ax, UMCS DATA
out dx, ax

; mov dx, OFFAOh
; mov ax, 0C038h

; out dx. ax

jmp far ptr START_

db ' Jah1

BOOTSTRAP ENDS

/Upper Memory CS start of EPROM F000:0, 64K

*
* C_ETEXT
*
* If you specify the INITDATA control in the PROM86, v5.2 and up, it will
* cause PROM8G to place all initializers in ROM starting at this
* location. The start-up routine assumes these initializers are placed
* behind program code in ROM and copy them to RAM at power-up.

C_ETEXT SEGMENT PARA PUBLIC ' CODE_END'

PUBLIC _etext
_etext LABEL BYTE ; This label marks the end of program code.

C ETEXT ENDS

END START_ ; Make sure the START_ symbol is here!

End of startup.asm

240

stpi.h, stpi.c

* STPI.H

* Petite Amateur Navy Satellite (PANSAT) .
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date who What
* + +
* 3 Nov 1993 Jah Creation
*

#ifdef STPI
#define

typedef struct

CMD STR LEN

{
char name [10] ;
void (*fptr) (char *inbuf) ,
charusage[81];

} cmd_struct;

static char
static void
static char

static void
static void
static void
static void
static void
static void
static void

static void
static void
static void
static void

static void

static void
static void

static void
static void
static void
static void
static void
static void
static void

static void
static void

static void
static void
static void
static void

static void
static void

static void

static void

static void

static void
static void

*get_token(char *buf, char *token),
parse_cmd(char *cptr);
*skip_blanks{char *cptr);

clear_screen(char *cptr);
in_port(char *cptr);
in_portw(char *cptr);
out_port(char *cptr);
out_portw(char *cptr);
pcbrtchar *cptr);
pcbw(char *cptr);

ad_config(char *cptr) ,-
ad_int(char *cptr) ,-
ad_read{char *cptr) ,•
ad_status(char *cptr);

debug_cmd(char *cptr);

disp_b(unsigned char a);
disp_w(unsigned int a);

m_on(char *cptr);
m_off(char *cptr);
m__clear (char *cptr) ;
m_spread(char *cptr);
m__hunt (char *cptr) ;
m_scca(char *cptr);
m_sccb(char *cptr);

pa_read(char *cptr);
pa_write(char *cptr);

edit(char *cptr);
dump(char *cptr);
load(char *cptr)
goto_load(char *cptr);

msa_cmd(char *cptr);
msb_cmd(char *cptr);

time_cmd(char *cptr);

test_cmd(char *cptr);

rf_cmd(char *cptr) ,-

tx_cmd(char *cptr);
rx_cmd(char *cptr);

241

static void

static void

static void

static void

static void
#endif

eps_cmd(char *cptr);

tmux_cmd(char *cptr);

tlm_cmd(char *cptr);

shutdown_cmd(char *cptr);

bcm_cmd(char *cptr);

Sifndef STPI
extern void monitor(void),

#endif

/************************ tim*tmti(»»utHHnnt»nitmH»i»t4i»iHH(tt»
*
* STPI.C

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.

* Copyright (c) 199G Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:

* Date Who What

* 3 Nov 1993 Jah Creation
*
** ************************/

#include «string.h>
Sinclude <ctype.h>
Sinclude <math.h>

#include "gen_defs.h"

#define STPI
#include "stpi.h"
Sundef STPI

#include
#include
#include
Sinclude
#include
#include
include
Sinclude
#include
#include
Sinclude
Sinclude

"ad.h"
"bcm.h"
"clock.h"
"dcs.h"
neps.h"
"pcb.h"
"print.h"
"modem.h"
"tlm.h"
"msu.h"
"scc.h"
"terms.h"

/* must be before msu.h */

WORDadr(int ch) ;

static cmd_struct cmd_table []

"els",
"help",

"adc",
"adi",
"adr",
"ads",

"m" ,
"inw",
"out",
"outw"

clear screen "CLS
parse cmd, "HELP

ad_config, "ADC
ad int, "ADI
ad_read. "ADR <channels
ad_status. "ADS

g_cmd, "DEBUG <0/l>

in_port, "IN <port>
in_portw, "INW <port>
out_port, "OUT <port> < value >
out_portw. "OUTW <port=> <value>

"pebr"
"pebw"

pebr,
pebw,

"PCBR <select> <addr>
"PCBW <select> <addr> <value>

Clear the screen.".
Display this menu.",

Show A/D configuration.",
Show A/D interrupt information.

Read A/D channels.",
Show A/D status.",

Debug info Off/Onn",

Input byte from port.",
Input word from port.",
Output byte from port.",
Output word from port.",

PCB read." ,
PCB write.",

242

"mOn, m off,
"ml", m on.
"c", m clear, "C
"hunt", m hunt,
"s", m spread,
"scca" , m scca.
"sccb", m_jsccb,

"par", pa read.
"paw", pa_write.

"load", load,
"goto", goto load,
"dump", dump,
"edit", edit.

"msa", msa cmd.
"msb", msb cmd,

M t ime", time_cmd,

"test". test__cmd,

"rf". rf cmd,

"tx". tx cmd,
"rx", rx cmd,

"eps", eps cmd,

"tmux", tmux cmd,

"bcm", bcm cmd,

"shutdown" shutdown cmd

"tlm", tlm cmd.

"", parse cmd.

"MO
"Ml

"SCCA <WR#> <data>
"SCCB <WR#> <data>

"PAW <filename>

"LOAD <filename>
"GOTO
"DUMP <seg> <off>
"EDIT <seg> <off>

Modem OFF.",
Modem ON.",

Modem clear mode 78.125k.",
Enter Hunt Mode." ,

Modem spread mode 9.842k.",
Send data to write register (A)."
Send data to write register (B)."

PA-100 read registers.",
PA-100 write registers.",

Load binary image to 1000:0100.",
Jump to 1000:0100.»,
Dump memory.",
Edit memory locations.",

"MSA <0/l;r/w/e|s/f> <addr> <data> Mass Storage A Control.",
"MSB <0/l:r/w/e:s/f> <addr> <data> Mass Storage B Control.",

»TIME <YY:MM:DD:HH:MM:SS> Get/Set time.",

"TEST",

"RF <0/l; T/R; Tx/Rx; LOP/LOA; LHP/LHA; P #; LNA0/LNA1; HPA0/HPA1; E #»

"TX <text messages", •
"RX <I; S>",

"EPS <B A/B C/D/O/T ON/OFF; C sys ON/OFF; V A#/B#/S; I A/B/S/P#; W>",

"TMUX <A/B CH#/ON/OFF>",

"BCM <ON/OFF>",

"SHUTDOWN",

};

/***
*
* monitor()

/ ********

void monitor(void)

{
static char cstr [CMD_STR_LEN + 1] ,
char *cptr • cstr;
char c;
static int l • 0;
static int end_string = FALSE;

while (is_senal_in() tk !end_string)

{
c = get_char(1.
if ((i c oc_s-n;_LEN) && (c != CR))

cstr|i••i ■ c,

if (c -- Ct

(
cstrli! - WJLLCHAR; /* replaces CR with a NULL_CHAR */
end Btrim - TRUE;

} /* End of WHILE •/

if (end_stringi

{
parse_cmd (cpt r) ,-
serial_out(CTRL W);

}

i = 0;
end_string = FALSE;

} /* End of monitor 0 */

/* indicate end of processing command */

/* reset pointer into command string to zero */
/* allow new string building next time */

243

* parse_cmd()
*

voidparse_cmd(char *cptr)
{

int n, m;
char cmd[10] ;
int found;
static char last_cmd[80];

if (cptr[0] == '!')
strcpyfcptr, last_cmd) ; /* copy last command to this command */

else

strcpy(last_cmd, cptr) ,- /* otherwise, save this command for next time */

cptr = get_token(cptr, cmd);

for (found = FALSE, n = 0; cmd table [n] .name [0] != '\0'; n++)
{

if (stricmp (cmd, cmd_table [n] .name) == 0)

{
found = TRUE;
if (stricmp(cmd, "help") == 0)

{
home();
clr();
dprint("PANSAT Monitor Commands\n");
dprint(" ====-======..==========\n") ;
for (m = 0; cmd_table[m].name[0] != '\0'; m++)

dprint("%s\n", cmd_table[m].usage);

else if (cmd_table [n] .name[0] != '\0')
{

dprint("\n") ;
(*cmd_table[n] .fptr) (cptr) ;
dprint("\n");

break;

if (!found)
{

serial_out(0x07);/* beep for error */
dprint("Command error.\n");

}

} /* End of parse_cmd()*/

* get_token()

*i****t****t****t*tt***ttt**t**t*****t*t

char *get_token(char *buf, char *token)
{

if (*buf == NULL_CHAR)

{
♦token = NULL_CHAR;
return(buf);

while ((*buf != ' ') && (»buf != NULL_CHAR))
*token++ = *buf++;

* token = NDLL_CHAR;

if (*buf == NULL_CHAR)
return(buf);

else
skip_blanks(buf);

♦♦•i********************************^

244

} /* End of get_token() */

/***

* skip_blanks 0
*

char *skip__blanks (char *buf)
{

while ((*buf =='')&& (*buf ! = NULL_CHAR))
buf++;

return(buf),-

} /* skip_blanks<) */

/***

*
* Supported monitor commands

**/

/***
*
* clear_screen{)
*
**/

voidclear_screen(char *cptr)

{
home();
clr() ;

} /* End of clear_screen() */

/***
*
* in_port ()
*
**/

void in__port (char *cptr)

{
char param[20];
unsigned char value;

cptr = get_token(cptr, param) ,-
value = inp(cnv_hex(param));

dprintCPort %X = %X ", cnv_hex (param) , value);
disp_b (value) ;

} /* End of in_port() */

/***
*
* injportw ()
*
**/

void in_portw(char *cptr)

{
char param [20] ;
unsigned int value;

cptr = geC_token(cptr, param);
value = inpw (cnv_hex (param)) ;

dprint (" Port %X = kX ", cnv_hex (param) , value);
disp_w(value);

} /* End of in_portw() */

245

* out_jport ()
*

void out_port(char *cptr)
{

charport [10] , value [10] ;

cptr = get_token(cptr, port);
cptr = get_token(cptr, value);

dprint ("Out %X to port %X" , cnv_hex (value) , cnv_hex(port)) ;

outp(cnv_hex(port), (BYTE)cnv_hex(value));

} /* End of out_port() */

*
* out_portw()
*

void out_portw(char *cptr)
{

charport [10] , value [10] ;

cptr = get_token(cptr, port);
cptr = get_token(cptr, value);

dprint ("Out %X to port %X", cnv_hex(value) , cnv_hex(port)) ;

outpw (cnv_hex (port) , (WORD) cnv_hex (value)) ,-

} /* End of out_portw() */

*
* pcbr
+

voidpcbr(char *cptr)
{

char cbuf [20];
unsigned int select, addr, value;

cptr = get_token(cptr, cbuf);
select = cnv_hex(cbuf);

cptr = get_token(cptr, cbuf);
addr = cnv_hex(cbuf);

value = pcb_re«d(select, addr);

dprintC'PCBR %x *x »x-, select, addr, value);

} /* End of pcbr0 •/

* pebw
*

voidpebwfehar *cptr)
{

char cbuf[20);
unsigned int select, addr, value;

cptr = get_token(cptr, cbuf),
select = cnv_hex(cbuf);

cptr = get_token(cptr, cbuf),
addr = env hex (cbuf) ,-

246

cptr = get_token(cptr, cbuf);
value = cnv_hex(cbuf);

pcb_write(select, addr, value);

dprint("PCBW %x %x %x", select, addr, value);

} /* End of pcbw() */

/♦»♦A***

* disp_b()

****************/ *********************************** *************

voiddisp_b(unsigned char a)

mt n;

for (n = 0; n <= 7; n++)

{
if (n == 4)

dprint(" ");

if (a & 0x80)
dprint("1");

else
dprint{"0");

a = a << 1;

} /* End of disp_b() */

* di sp_w()
*

voiddisp_w(unsigned int a)

(
int n;

for (n = 0; n <= 15; n++)

{
if (n%4 == 0)

dprint{" M);

if (a & 0x8000)
dprint("1");

else
dprint("0");

a = a << 1;

/* End of disp_w() */

#define AD BASE 0x80
#define AD INSTR0 AD BASE
#define AD INSTR1 AD BASE + 2
Wdefine AD INSTR2 AD BASE + 4

#define AD INSTR3 AD BASE + 6
#define AD INSTR4 AD BASE + 8
#define AD INSTR5 AD BASE + OxOA
#define AD INSTR6 AD BASE + OxOC
ttdefine AD INSTR7 AD BASE + OxOE
#define AD CONFIG AD BASE + 0x10
#define AD IER AD BASE + 0X12
#define AD ISR AD BASE + 0x14
#define AD TIMER AD BASE + 0x16
#define AD FIFO AD BASE + 0x18
#define AD_LIMIT AD_ BASE + OxlA

/* Masks */
#define RAM00 0x0000
#define RAM01 0x0100

247

#define RAM02 0x0200

/••tt*t>mttit*i.»i*mttit«».1iM»((.j»m.mn»*tu»(it.tn«.«i.t*t»ttttt» *
* ad_config()
*

voidad_conf ig(char *cptr)
f

unsigned int temp = inpw (AD_CONFIG) ;

dprintCA to D Configuration Register: %X = %X\n", AD_CONFIG, temp);

dprint(" Start = ");
if (temp & 0x0001)

dprint("1, Sequencer is running.\n");
else

dprintC'O, Sequencer is stopped.\n") ;

dprint(" Reset = ");
if (temp & 0x0002)

dprint("1, unit is still resetting.\n") ;
else

dprintC'O, unit is not resetting. \n") ;

dprint(" Auto Zero = ") ;
if (temp & 0x0004)

dprint("1, in progress.\n");
else

dprintC'O, not occurring.\n");

dprint(" Full Calibration = ");
if (temp & 0x0008)

dprint("1, in progress.\n");
else

dprintC'O, not occurring.\n");

dprint(" Standby = ");
if (temp & 0x0010)

dprint("1, in standby mode.\n");
else

dprintC'O, not in standby mode.\n");

dprint(" Channel Mask = ");
if (temp & 0x0020)

dprint("1, FIFO bits 15-13 are sign.\n");

else

dprintC'O, FIFO bits 15-13 are pointer.\n") ;

dprint(" Short Auto Zero = ");
if (temp & 0x0040)

dprint("1, occurs before every conversion.\n") ;
else

dprint CO, disabled. \n") ;

dprint(" Sync = ");
if (temp & 0x0080)

dprint("1, SYNC pin is an output.\n");
else

dprintCO, SYNC pin is an input.\n");

dprint (" RAM pointer = %X\n", (temp & 0x0300) » 8) ;

dprint(" Test = ");
if (temp & 0x0400)

dprint("1, in test mode.\n");
else

dprintC'O, not in test mode.\n");

dprint C Diagnostic = "),-
if (temp & 0x0800)

dprint("1, in diagnostic mode.\n");
else

dprintC'O, not in diagnostic mode.\n");

} /* End of adc() */

*
* ad_int()

248

***********************************+**************************************+*/

voidad_int(char *cptr)
{

unsigned int ier = inpw (AD_IER) ;
unsigned int temp, i;

dprint("A to D Interrupts: %X = %X\n", AD_IER, ier) ;

dprint (" Interrupts enabled: ");
for (temp = ier, i = 0; i <= 7; i++)

{
if (i != 6)

if (temp & 0x0001)
dprint("%d ", i);

temp >> 1;

}
dprint(n\nn) ;
dprint<" Sequencer address to generate INT1 = %X\n", (ier & OxOFOO) >> 8) ;
dprint {" # of conversions in FIFO to generate INT2 = %X\n", (ier & 0xF800) » 11),

} /* End of ad_int() */

ft**

* ad_read

voidad_read(char *cptr)

{
unsigned int c, value, isr, temp;
double x;
char buf[20];

outpw (AD_CONFIG, 0x0002) ; /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw(AD_CONFIG, 0x0008); /* Full Calibration */
while (inpw(AD_CONFIG) & 0x0008) /* Wait for calibration to finish */

outpw(AD_CONFIG, 0x0000); /* Stop sequencer, point to RAM 00 */

/* DCS Temperature, MUX+ = IN0, MUX- = GND */
outpw (AD_INSTR0, 0xF202) ; /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- = Gnd, Vin+ = IN0 */
/* Pause = YES, loop = NO */
/* Note: pause will happen after loop */

/* Modem Temperature, MUX+ = INI, MUX- = GND */
outpw(AD_INSTR1, 0xF204) ; /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- = Gnd, Vin+ = INI */
/* no pause, loop = NO */

/* TMUXA, MUX+ = IN4, MUX- = GND */
outpw(AD_INSTR2, 0xF210) ; /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- = Gnd, Vin+ = IN4 */
/* no pause, loop = NO */

/* TMUXB, MUX+ = IN6, MUX- = GND */
outpw(AD_INSTR3, 0xF218); /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- = Gnd, Vin+ = IN6 */
/* no pause, loop = NO */

/* EPS, MUX+ = IN2, MUX- = GND */
outpw(AD_INSTR4, OxF209) ; /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- = Gnd, Vin+ = IN2 */
/* no pause, loop = YES */

/* RAM 01(1) and 10(2) are not set - limit stuff */

/* Timer to slow the conversion rate */
/* outpw (ADJTTMER, 0x1000); */

outpw(ADJTIMER, 2000) ;

outpw(AD_CONFIG, 0x0002) ; /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

249

outpw(AD_CONFIG, 0x0001); /* start sequencer */

/* Wait for INT S - Pause Interrupt */
while (!inpw(AD_ISR & 0x0020))

/* Sequencer is stopped, due to Pause in last instruction */

/* Wait for 5 samples in the FIFO */
while (((inpw(AD_ISR) & OxF800) >> 11) < 5)

c = (inpw(AD_ISR) & 0XF800) >> 11;
while (c)

{
value = inpw(AD_FIFO) ;
dprint("%u) ", (value & OxEOOO) » 13);
if (value & 0x1000)

dprint("-");
dprint("%u, ", (value & OxOFFF));

dprint("Ox%X, ", (value & OxOFFF));

x = (double)(value & OxOFFF);
x = (x/4095.0)*5.0;

dprint("%3.31f Volts", x) ;

switch! (valueScOxEOOO) >>13)

{
case 0: /* DCS Temp */

x = (x - 0.5)*100;
dprint (", DCS Temp. = %3.31f C", x) ,-
break;

case 1: /* Modem Temp */
x = (x - 0.5)/.01;
dprint(", Modem Temp. = %3.31f C", x);
break;

case 2: /* TMUXA Temp */
dprint (", TMUXA Temp. = %d C", cnv_therm(value&0x0FFF)) ;
break;

case 3: /* TMUXB Temp */
dprint(", TMUXB Temp. = %d C", cnv_therm(value&0x0FFF));
break;

case 4: /* EPS Measurement */
dprint(", EPS");
break ,-

dprint("\n");

/* Do a diagnostic test */

/* Using Diagnostic mode: VIN+ = 000 = VREFOUT, VIN- = 000 = GND */
outpw(AD_INSTR0, 0xF202); /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync */
/* Pause = YES, loop = NO */
/* Note: pause will happen after loop */

/* Using Diagnostic mode: VIN+ = 001 = VREF+, VIN- = 001 = VREF- */
outpw(AD_INSTR1, 0XF225); /* acq. time = full way, no wdog, 12-bit, */

outpw (AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw(AD_CONFIG, 0x0801); /* start sequencer in diagnostic mode »/

/* Wait for INT 5 - Pause Interrupt */
while (!inpw(AD_ISR & 0x0020))

/* Sequencer is stopped, due to Pause in last instruction */

/* Wait for 2 samples in the FIFO */
while (((inpw(AD_ISR) & OxFSOO) >> 11) < 2)

250

c = (inpw(AD_ISR) & 0xF800) >> 11;
while (c)

(
value = inpw(AD_FIFO) ;
if (c == 2)

dprint("Diagnostic: VREFOUT to GND: ");
else if (c == 1)

dprint("Diagnostic: VREF+ to VREF-: ");
dprint("%u) ", (value & OxEOOO) >> 13);
if (value S. 0x1000)

dprint("- ") ;
dprint("%u, ", (value & OxOFFF));

dprint("0x%X, ", (value & OxOFFF));

x = (double) (value & OxOFFF) ,-
X = (x/4095.0)*5.0;

dprint("%3.31f Volts\n", x);
C--;

}

} /* End of ad_read() */

* ad_status
*

voidad_status(char *cptr)

(
unsigned int isr = inpw (AD_1SR) ;
unsigned int temp, i;

dprint("A to D Interrupts: %X = %X\n", AD_ISR, isr);

dprint(" Interrupts Generated: ");
for (temp = isr, i = 0; i <= 7; i++)

{
if (i != 6)

if (temp & 0x0001)
dprint("%d ", i);

temp >> 1;

}
dprint("\n");
dprintt" Sequencer's current address = %X\n", (isr & OxOFOO) >> 8);
dprintt" # of conversions in FIFO = %X\n", (isr & 0xF800) >> 11);

} /* End of ad_status() */

*
* m_off()
*

voidm_off(char *cptr)
{

modem^off();

dprint("Modem OFF");

} /* End of m_off () */

*
* m_on()
*

voidm_on(char *cptr)
{

modem on();

dprint("Modem ON");

} /* End of m_on() */

251

/***ic*1c*******ie.kicil

*
* m_clear()
*
***+++++++/

voidra_clear (char *cptr)
{

modem_clear();

dprint("Modem Clear");

} /* End of m_clear() */

Z***
*
* m_spread()

**

voidm_spread(char *cptr)
{

modem_spread();

dprint("Modem Spread");

} /* End of m_spread() */

*
* m_hunt()
*

voidm_hunt (char *cptr)
{

scc__hunt () ;

} /* End of m__hunt() */

Z***
*
* m_scca()

***++*+++**+*+++*+/

voidin_scca (char *cptr)
{

charreg[10] , valuetlO],-
WORD data;

cptr = get_token(cptr, reg) ;
cptr = get_token(cptr, value);

if (value[0] == NULL_CHAR)
{

outp(SCCA_CMD, cnvjhex(reg)) ;
data = inp(SCCA_CMD) ,-
dprint("SCCA RR#%s = %X ", reg, data);
disp_b((BYTE)data);

}

else
scca_wreg(cnv_hex(reg) , cnvjiex (value)) ;

} /* End of m_scca() */

/********************************** + * + ************* + ************** + ***** + ** + **
*
* tn_sccb()
*

voidm_sccb(char *cptr)
{

char reg [10], value [10],•
WORD data;

252

cptr = get_token(cptr, reg);
cptr = get_token(cptr, value) ,-

if (value[0] == NULL_CHAR)
{

outp (SCCB_CMD, cnv_hex (reg)) ;
data = inp(SCCB_CMD);
dprintf'SCCB RR#%s = %X ", reg, data);
disp_b((BYTE)data);

else
sccb_wreg (cnv_hex(reg) , cnv_hex (value)) ;

} /* End of m_sccb() */

/«««A***

* pa_read()
*

voidpa_read(char *cptr)

(
pal0O_read_regs 0;

} /* End of pa_read() */

/******** *** ********
*
* pa_write 0
*
* This command requests of the terminal emulator program on the other side of
* the RS-232 to send the contents of the filename requested via this command
* parameter. The filename is preceeded with a CTRL-Z which indicates to the
* terminal emulator that a request to open, read, and download a local file
* across the serial port. The download is complete when a CTRL-Z from the
* terminal emulator is sent and received at this end.
*
* The data across the serial line comes in pairs. The first is the address
* offset {into the PA-100) , followed by the data to be written to that
* address. If there is no data associated with the filename, then only
* the terminating CTRL-Z will be sent, causing the count, c, to be zero.
*
**/

voidpa_write (char *cptr)

{
char filename [30] ;
BYTEx;
int c, i;
static palOO_instr_struct pal00_conf ig [75] ,-

cptr = get_token(cptr, filename);
dprint("Receiving data from %s.\n", filename);

Serial_out((BYTE)CTRL_Z);
dprint("%s", filename);
serial_out((BYTE)CTRL_Z);

if ((c = get_char()) == 0)
dprint("No data downloaded!");

else if (c < 75)

{
for (i = 0; i < c; i++)

{
pal00_config[i].address = get_char();
pal00_config[i].data = get_char();

}

pal00_config[c].address = OxFF;
pal00_config[c].data = OxFF;

dprint("Data received for %d instructions .\n" , c) ;
palOO_write_table(pal00_config);
dprint("Data downloaded to PA100.");

253

else

dprint("Error, attempting to load a table greater than 75 elements!"),

/* End of pa_write() */

* loadO
*

void load(char *cptr)

{
char filename [30] ;
BYTE x;
unsigned int c, i;
unsigned long temp;
BYTE far * ptr;

temp = ((unsigned long)0xl000<<16) + (unsigned long)(0x0100);
ptr = (BYTE far *)temp;

cptr = get_token(cptr, filename);
dprint("Loading program image from %s to %P.\n", filename, ptr);

serial_out ((BYTE) CTRL_Y) ;
dprint("%s", filename);
serial_out ((BYTE) CTRL Y) ;

c = get_char();
c *= 256;
c += get_char();

if (c == 0)
dprint("No program image loaded!");

else

{
i = C;
while (i--)

{
x = get_char();
*ptr = X;
++ptr;

}

dprint ("Program image loaded, %d bytes ." , c) ,-

}

} /* End of loadO */

/«•»»tmjumjiKtmitjMi.tiutHHti.m,,,,,,«,,«,,,,,,,,,,,^,,,,,,,

* goto_load()
*
t*#*tt*t*tttt*tttt*ttttttti**tt***tttt****it*it*t*it*ttt***t*tttt**i*ttt/

voidgoto_load(char *cptr)

{
/* Transfer control to the os RAM image at 0x1000:0100 */
_asm

{
cli
mov ax, 0x1000
push ax ; new CS = 0x1000
mov ax, 0x0100
pushax ; new IP = 0x0100
sti
retf

}

} /* End of goto_load() */

*
* dump()

254

voiddump{char *cptr)
{

char buf [10] ;
static BYTE far * ptr = 0L;
BYTE val ;
WORD segment, offset;
unsigned long temp;
int i, j;

cptr = get_token(cptr, buf);
if (buf[0] != NDLL_CHAR)

{
segment = cnv_hex(buf);
cptr = get_token(cptr, buf);
offset = cnv_hex(buf);
temp = ((unsigned long) segment<<16) + (unsigned long) (offset & OxFFFF) ;
ptr = (BYTE far *)temp;

for (i = 0; i < 256; i += 16)

{
dprint("%P ", (BYTE far *) (ptr + i)) ,-
for (j = 0; j < 16; j++)

f
if (j == 8)

dprint(" ");
val = ((BYTE)*(ptr+i+j));
if (val < 0x10)

dprint("0");
dprint("VX ", val);

}
dprint(" ");
for (j = 0; j < 16; j + +)

{
val = ((BYTE)*(ptr+i+j));
if ((val >= 32) && (val <= 127))

dprint("%c",*(ptr+i+j));
else

dprint(".") ;

}
dprint("\n") ;

}

ptr += 256;

) /* End of dumpf) */

*
* edit()

voidedit(char *cptr)

{
char buf[10];
BYTE far * ptr;
BYTE val ;
WORD segment, offset;
unsigned long temp;

cptr = get_token(cptr, buf);
segment = cnv_hex(buf);
cptr = get_token(cptr, buf);
offset = cnv_hex(buf);

temp = ((unsigned long)segment<<16) + (unsigned long)(offset & OxFFFF);
ptr = (BYTE far *)temp;

dprint("\n%P>", ptr);
get_string(buf, 50);
while (buf[0] ! = NULL_CHAR)

{
val = cnv_hex(buf);
(*ptr) = val;
ptr++;

255

dprint("\n%P>", ptr);
get_string(buf, 50) ,-

} /* End of edit<) */

/**
*
* msu cmd()

** *********>

#define READ 1
#define WRITE 2
#define DUMP 3
#define NONE 0
#define FLASH 1
#define SRAM 2
#define STR LEN 100

voidmsu_cmd(char *cptr, int device)

{
char buf [10] , addr_buf [10] ;
unsigned long intaddr;
int type = NONE;
unsigned int data;
int action = NONE;
int i = 0;
int j ;
WORD X;
static BYTE str[STR_LEN] ;
BYTE dbuf[256], val;
static DWORD daddr = 0;

cptr = get_token(cptr, buf);

if {buf[0] == '0')
msu_off(device);

/* Turn OFF */

else if (buf[0] == '1')
msu on(device);

/* Turn ON */

else

{
cptr = get_token(cptr, addr_buf);
addr = cnv_lhex(addr_buf);

if (stricmplbuf, "rs") == 0) /* Read Static */

{
if (debug)

dprint("Reading SRAM @ %lx\n" , addr);
type = SRAM;
action = READ;

else if (stricmp(buf, "rf") == 0) /* Read Flash */

{
if (debug)

dprint("Reading FLASH @ *lx\n", addr),
type = FLASH;
action = READ;

else if (stricmp(buf, "df") == 0) /* Dump Flash */

{
type = FLASH;
action = DUMP;
if (addr_buf[0] != '\0')

daddr = addr;
/* else, get the next paragraph from the last dump */

}

else if (stricmpfbuf, "ds") == 0) /* Dump Static */

{
type = SRAM;
action = DUMP;
if (addr_buf[0] != '\0')

daddr = addr;
/* else, get the next paragraph from the last dump */

else if (stricmp(buf, "ws") »= 0) /* Write Static */

256

{
if (debug)

dprint("Writing SRAM @ %lx\n", addr);
type = SRAM;
action = WRITE;

else if (stricmp(buf, "wf") == 0) /* Write Flash */

{
if (debug)

dprint("Writing FLASH @ %lx\n", addr);
type = FLASH;
action = WRITE;

else if (stricmp(buf, "ef") == 0) /* Erase Flash */

{
if (debug)

dprint {"Erasing FLASH for MSA\n") ;
msu_f lash_erase (device) ,-
return;

}

else if (stricmp(buf, "af") == 0) /* Address Flash */

{
if (debug)

dprint("Setting Flash address = %lx\n", addr);
msu_set_faddr(device, addr);
return;

}

else if (stricmp(buf, "cf") == 0) /* Address Flash */

{
if (debug)

dprint("Reading Flash Codes....");

dprint("Flash Codes = %X\n", msu_flash_codes(device)) ;
return;

}

else if (stricmp(buf, "tf") == 0) /* Test Flash */

{
if (debug)

dprint("Performing Flash test. . . .") ;

msu_ftest(device);
return;

else if (stricmpfbuf, "ts") == 0) /* Test SRAM */

{
msu_stest(device);

}

switch(action)

{
case READ:

if (type == SRAM)
data = msu_sram_readl(device, addr++);

else
data = msu_flash_readl(device, addr++);

while ((data != NDLL_CHAR) && (i < STR_LEN-1))

{
str[i++] = data;
if (type == SRAM)

data = msu_sram_readl(device, addr++);
else

data = msu_flash_readl (device, addr++) ,-

}
str[i] = NULL_CHAR;
dprint("fcs", str) ;
break;

case DUMP:
if (type -= SRAM)

msu_sram_read(device, daddr, (BYTE *)&dbuf, 25G) ;
else

msu_flash_read(device, daddr, (BYTE *)&dbuf, 256);

for (i = 0; i < 256; i += 16, daddr +- 16)

{
if (daddr < 0x10)

dprint("0");

257

if (daddr < 0x100)
dprint("0");

if (daddr < 0x1000)
dprint("0");

if (daddr < 0x10000)
dprint("0");

if (daddr < 0x100000)
dprint("0");
dprint(»%1X ", daddr);
for (j = 0; j < 16; j++)

{
if (j == 8)

dprint (" ") ;
val = dbuf[i+j];
if (val < 0x10)

dprint("0");
dprint("%X ", val);

}
dprint(" ");
for (j = 0; j < 16; j++)

{
val = dbuf[i+j];
if ((val >= 32) && (val <= 127))
dprint("%c", dbuf [i+j]);

else
dprint(".");

}
dprint("\n");

}

break;

case WRITE:
while (Ccptr != NULL_CHAR) && (i < STR LEN))

{
if (type == SRAM)

msu_sram_writel(device, addr++, *cptr);
else

msu_flash_writel(device, addr++, *cptr);
i++;
cptr++;

}
if (type == SRAM)

msu_sram_writel(device, addr, *cptr);
else

msu_f lash_writel (device, addr, *cptr) ,■
break;

default:
dprint("MSU command error.");

} /* End of SWITCH */

} /* End of ELSE •/

} /* End of msu_cmd() •/

* msa_cmd()

voidmsa_cmd(char »cptrl
{

msu_cmd(cpcr, MSAC ,

} /* End of msa_c«Kl; ; •■

*
* msb_cmd{)

t + *** + t*ttt**ttt«HI«IM«..ttt»tt**tt*tt****t**t*t*tt*t**JrHttt*tt*t***Jrt**t/

voidmsb_cmd{char *cptr)
{

msu_cmd(cptr, MSB0);

} /* End of msb_cmd() */

258

/***
*
* debug__cmd ()
*
**

voiddebug_cmd(char *cptr)
{

char buf [10] ;

cptr = get_token(cptr, buf);

if (buf[0] == '0')
debug = FALSE;

if (buf[0] == '1')
debug = TRUE;

} /* End of debug_cmd() */

/•«A**

*
* time_cmd()
*

void time_cmd (char *cptr)
{

static int mdays[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, '30, 31, 30, 31};
static char *dow_str[] = {"Thu", "Fri", "Sat", "Sun", "Mon", "Tue", "Wed"};
static char *dom_str[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

"Aug", "Sep", "Oct", "Nov", "Dec"};
unsigned longt, et, tdays, tsecs;
char buf [20];
int year, month, day, hour, min, sec, dow, leap;

cptr = get_token(cptr, buf);

if (buf [0] == NULL_CHAR)

{
t = get_time () ;
et = get_elapsed_time () ;
tsecs = t;
tdays = t/SECS_PER_DAY;

/* first, get elapsed years */
leap = 2; /* corresponds with Modulo four, starting with 1970 */
year = 0;
while (tdays >= 366)

{
if (leap%4 == 0)

{
tdays -= 366;
tsecs -= 366*SECS_PER_DAY;

}
else

!
tdays -= 365;
tsecs -= 365*SECS PER DAY;

year++;
leap++,-

)
if ((tdays == 365) && ! (leap%4 == 0))

{
tdays -= 365;
tsecs -= 365*SECS_PER_DAY;
year++;

/* now, get the month */
month = 1;
while (tdays >= mdays[month])

(
if ((month ==2) && (leap%4 ==0))

{
tdays -= 29;
tsecs -= 29*SECS_PER_DAY;

}
else

259

{
tdays - = mdays [month] ;
tsecs -= mdays[month]*SECS_PER DAY;

}
month++;

day = tdays;
tsecs -= day*SECS_PER_DAY;

if (debug)

(
dprint("year=%d, month=%d, day=%d ", year, month, day);
dprint("tsecs remaining=%ld\n", tsecs);

}

hour = tsecs/SECS_PER_HOUR;
tsecs -= hour*SECS_PER_HOUR;

min = tsecs/SECS_PER_MIN;
tsecs -= min*SECS_PER_MIN;

sec = tsecs;

dow = (t/SECS_PER_DAY)%7; /* o=Thu, l=Fri, etc. */

dprint("%s %d %s %d, ", dow_str[dow], day+1, dom_str[month-1], 1970+year);
if (hour < 10)

dprint("0%d:", hour);
else

dprint("%d:", hour);
if (min < 10)

dprint("0%d:", min);
else

dprint("%d:", min);
if (sec < 10)

dprint("0%d", sec);
else

dprint("%d", sec);

/* Elapsed time */
day = et/SECS_PER_DAY;
et -= day*SECS_PER_DAY;
hour = et/SECS_PER_HOUR;
et -= hour*SECS_PER_HOUR;
min = et/SECS_PER_MIN;
et -= min*SECS_PER_MIN;
sec = et;
dprint(" (Elapsed time = ");
if (day < 10)

dprint("0 %d:", day) ;
else

dpr int (" 3rd: " , day) ;
if (hour < 10)

dprint("0%d:", hour);
else

dprint("%d:", hour);
if (min < 10)

dprint("0%d:", min);
else

dprint("%d:", min);
if (sec < 10)

dprint C0%d) \n" , sec) ;
else

dprint("%d)\n", sec) ;

else

buf [2] = NULL_CHAR;
year = atoi(buf) - 70;
if (year < 0)

year += 100; /* compensate for next century */

buf [5] = NULL_CHAR;
month = atoi(buf+3) - 1;

buf [8] = NULL_CHAR;
day = atoi(buf+6) - 1;

buf [11] = NULL_CHAR;
hour = atoi(buf+9);

buf [14] = NULL_CHAR;

260

min = atoi(buf+12);

sec = atoi (buf+15) ,-

leap = (year+2)/4; /* number of leap years since 1970 */

t = year*SECS_PER_YEAR + leap*SECS_PER_DAY;
while (month > 0)

t += mdays [month--] *SECS_PER_DAY;

t += day*SECS_PER_DAY;

t += (hour*SECS_PER_HOUR) + (min*SECS_PER_MIN) + sec;

set_time(t);

}

} /* End of time_cmd<) */

/***#*****
*
* rf_cmd()

f*******

************************************** lr********************* ********/

#define TOCON 0XFF56
#define T0CNT 0xFF50
#define T0CMPA 0xFF52

#define T0CMPB 0xFF54

#define T1CON OxFFSE
#define T1CNT 0XFF58
#define T1CMPA OxFFSA

Sdefine T1CMPB OxFFSC

voidrf cmdCchar *cptr)

static BYTE bits = 0x00

char buf [10] ,-

int temp;

cptr = get_token(cptr, buf);

if (stricmp(buf, "0") == 0)

eps_set_power (RF, OFF);

else if (stricmp(buf, "1") == 0)

eps_set_power(RF, ON);

else if (stricmp(buf, "t") == 0)

bits |= 0x01;

pcb_write(0, 0, bits);

else if (stricmp(buf, "r") == 0)

bits &= -0x01;

pcb_write(0, 0, bits);

else if (stricmp(buf, "tx") == 0)

bits |= 0x02;

pcb_write(0, 0, bits);

else if (stricmp(buf, "rx") == 0)

bits &= -0x02;

pcb_write(0, 0, bits);

else if (stricmp(buf, "lop") == 0)

bits &= -0x04;

pcb_write(0, 0, bits);

261

else if (stricmp(buf, "loa") == 0)
{

bits |= 0x04;
pcb write(0, 0, bits);

)

else if (stricmp(buf, "lhp") == 0)

{
bits &= -0x08;
pcb write(0, 0, bits);

)

else if (stricmp(buf, "lha") == 0)
(

bits |= 0x08;
pcb write(0, 0, bits);

}

else if (stricmp(buf, "p") == 0)
(
i

cptr = get_token(cptr, buf);
temp = cnv_hex(buf);
temp &= 0x03;
temp <<= 4;
bits |= (BYTE)temp;
pcb write(0, 0, bits);

}

else if (stricmp(buf, "InaO") == 0)
{

'

bits |= 0x40;
pcb write(0, 0, bits);

}

/* reverse logic than all others */

else if (stricmp(buf, "lnal") == 0)
(
i

bits &= -0x40;
pcb write(0, 0, bits);

}

/* reverse logic than all others */

else if (stricmpfbuf, "hpaO") == 0)
(i

bits &= -0x80;
pcb write(0, 0, bits);

}

else if (stricmpfbuf, "hpal") == 0)
(
i

bits |= 0x80;
pcb write(0, 0, bits);

)

else if (stricmpfbuf, "e") == 0)
(
i

outpw(TOCNT, 0);
outpw(TOCMPA, 0); /*
outpw(TOCON, OxCOOl); /*

maximum count (65536) */
internal elk, retrigger, CMPA only */

outpw(T1CNT, 0);
outpw(T1CMPA, 1);

cptr = get_token(cptr, buf);
if (buf[0] == NULL_CHAR)

/* smallest compare A */

/* default to 5 second RF Enable */
temp = 140; /* -5 seconds */

else

(
temp = cnv_hex(buf) ;
temp *= 28; /* -28 CMPB per second */

outpw(T1CMPB, temp);

outpwfTlCON, 0xC006); /* ext. elk, one shot, CMPA/CMPB dual mode */

} /* End of rf_cmd() */

262

/***

* test_cmd()
*
**

void test_cmd(char *cptr)
{

int c, x;
WORD value;
double d;

#define AD_WAIT 5000

pcb_write(EPSO, 3, 0x70);
pcb_write(EPSO, 1, 0x50);

/* Setup MUXes A/B for first temperature sensors (Calibration resistors) */
pcb_write (TMUXA0, 0, 0x10);
pcb_write (TMUXB0, 0, 0x10);

pcb_write(EPS0, 3, 0x80); /* EPS Port 3 */
pcb_write(EPS0, 1, 0x30); /* EPS Port 1 */

eps_set_port2 (eps_get_port2 ()) ;

outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
/* Wait for RESET bit to clear */
for (x = 0; (x c ADJJAIT) && (inpw(AD_CONFIG) & 0x0002); X++)

if (x == AD_WA1T)

{
ad_flag = 1;
return;

}

outpw(AD_CONFIG, 0x0008); /* Full Calibration */
/* Wait for CALIBRATION bit to clear */
for (x = 0; (x < AD_WAIT) && (inpw (AD_CONFIG) & 0x0008); x++)

if (x == AD_WAIT)

{
ad_flag = 1;
return;

outpw(AD_CONFIG, 0x0000); /* stop the sequencer and point to RAM 00 */

/* Program A/D Sequencer: based on schedule for period 0 */
outpw (AD_INSTR0 , 0xF2 0 0)
OUtpw (AD_INSTR1, 0XF204)
OUtpw (AD_INSTR2, 0xF208)
outpw (AD_INSTR3, 0xF210)
OUtpw (AD_INSTR4 , 0XF218)
OUtpw (AD_INSTR5, 0XF202) ; /* Pause */

/* Setup A/D Timer */
OUtpw(AD_TIMER, 2000);

OUtpw (AD_C0NFIG, 0x0002); /* Reset the A/D */
/* Wait for RESET bit to clear */
for (x = 0; (x < AD_WAIT) && (inpw (AD_C0NFIG) &. 0x0002); X++)

if (x == AD_WAIT)

{
ad_flag = 1;
return;

}

/* Force A/D to interrupt when 5 readings in the FIFO occur */
/* outpw(AD_IER, 0x2804) ; */

/* Clear any interrupts of the A/D by reading the status register */
/* inpw (AD_ISR) ; */

/* Start the A/D Sequencer. Interrupt will occur eventually */
outpw(AD_C0NFIG, 0x0001); /* start sequencer */

263

/* Wait for 5 samples in the FIFO */
while (((inpw(AD_ISR) & 0xF800) » 11) < 5)

c = (inpw(AD_ISR) & OxF800) >=. 11;
while (c)

{
value = inpw(AD_FIFO);
dprint("%u) ", (value & OxEOOO) >> 13);
if (value & 0x1000)

dprint("-");
dprint("%u, ", (value & OxOFFF));

dprint("0x%X, ", (value & OxOFFF));

d = (double)(value & OxOFFF);
d = (d/4095.0)*5.0;

dprint("%3.31f Volts", d);

switch((value&OxEOOO)= >13)

{
case 0: /* DCS Temp */

d = (d - 0.5)*100;
dprintC, DCS Temp. = %3.31f C", d) ;
break;

case 1: /* Modem Temp */
d = (d - 0.5)/.01;
dprintC, Modem Temp. = %3.31f C", d) ;
break;

case 3: /* TMUXA Temp */
dprintC, TMUXA Temp. = %d C", cnv_therm(valueS:0x0FFF))
break;

case 4: /* TMUXB Temp */
dprintC, TMUXB Temp. = %d C", cnv_therm(value&0x0FFF))
break;

case 2: /* EPS Measurement */
dprintC, EPS") ;
break;

dprint("\n");
c--,-

}

/* End of test_cmd() */

*
* tx_cmd()
*

voidtx_cmd{char *cptr)

f
int i ;

i = 0;
while ((*cptr != NULL_CHAR) && (i < 128))
{

cha_out_buf0[i] = *cptr;
cptr++;
i + +;

}

/* Setup the pointer to the source for DMA channel 1 (Tx) */
_asm

{
mov ax, SEG cha_out_buf0
rol ax, 4
mov bx, ax
and ax, OxFFFO
add ax, OFFSET cha_out_buf0
adc bx, 0
and bx, OxOOOF
mov dx, D1SRCL
out dx, ax

264

mov ax, bx
rnov dx, D1SRCH
out dx, ax

}

/* Setup the pointer to the destination for DMA channel 1 (Tx) */
outpwfDIDSTH, 0x0000);
outpw(DlDSTL, SCCA_DATA) ;

outpwfDITC, i) ,- /* DMA Transfer Count */

outpw(DlCON, 0x1786); /* DST: i/o, no inc., no dec; SRC: mem, inc., no dec.
* terminate on TC; INT on TC; Dest. Synch;
* low priority; do not use Tmr2; Byte xfer
* Start the DMA channel */

} /* End of tx_cmd() */

*
* rx_cmd()
*
*************** + ********************* + ************ + ***************** + ***** + */

void rx_cmd (char *cptr)

{
charbuf [10] ;

cptr = get_token(cptr, buf);
if (stricmpfbuf, "i") == 0)

{
inp(SCCA_DATA);
inp(SCCA_DATA),
inp(SCCA_DATA) ,

/* Setup the pointer to the destination for DMA channel 0 (Rx) */
_asm

{
mov ax, SEG cha_in_buf0
rol ax, 4
mov bx, ax
and ax, OxFFFO
add ax, OFFSET cha_in_buf0
adc bx, 0
and bx, OxOOOF
mov dx, D0DSTL
out dx, ax
mov ax, bx
mov dx, D0DSTH
out dx, ax

/* Setup the pointer to the source for DMA channel 0 (Rx) */
outpw(D0SRCH, 0x0000);
outpw(D0SRCL, SCCA_DATA);

outpw(D0TC, 514); /* DMA Transfer Count - include the two CRC bytes */

outpw(D0CON, 0xA366) ; /* DST: mem, inc., no dec.; SRC: i/o, no inc., no dec.
* terminate on TC; INT on TC; Source Synch;
* high priority; do not use Tmr2; Byte xfer
* START the channel */

dprintCRx initialized and ready. \n") ;
return;

if (inp(SCCA_CMD) & 0x010)
dprint("Sync (Flag) not detected, still in Hunt Mode\n");

else
dprint("Sync (Flag) detected!\n");

if (stricmplbuf, "s") == 0)

{
dprint^Tx Underrun/EOM: %u, Rx Overrun: %u\n", a_txunderrun_eom, a_rxoverrun) ;
dprint{"Break/Abort: %u\n", ajork abort);

265

if (rx_eom)

{
dprint("%s\n", cha_in_buf 0) ;
rx_eom = FALSE;

}
else

dprint (**No message received. \n") ;

} /* End of rx_cmd() */

* eps_cmd()
*

voideps_cmd (char *cptr)
{

char buf [10] ;
static char *ctrls[]={"HeatA", "", "TMUXA", "MSA", "", "", "", "",

"", "" , "Ant-Rel", "MSB", "TMUXB", "RF", "HeatB", " " } ;
static char *bat_sw [] ={ "B Trickle", "B Online", "B Discharge", "B Charge",

"A Trickle", "A Online", "A Discharge", "A Charge"};
static int bat_cmdl[2][9] = {{0, 0, 0, 0, 0, 1, 3, 5, 7}, {0, 0, 0, 0, 0, 9, 11, 13, 15} };
static int bat_cmd2[2][9] = {{0x70, 0x90, OxFl, 0xF3, 0xF5, 0x10, 0x10, 0x10, 0x10},

{OxBO, OxDO, 0xF7, 0xF9, OxFB, 0x10, 0x10, 0x10, 0x10}};
static double bat_cnv[2] [9] = {{l, 1, .585, .585, .585, .409, .409, .409, .409},

{l, 1, .525, .525, .525, .21, .21, .21, .21}};
static int i_sp_crad[8] = {0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70};
static int i_sp_tbl[8] = {4, 5, 7, 9, 11, 13, 14, 16};
int temp, n;
int bat, dev;
int x;
WORD a, tempw;
double d, sign;
BYTEb;

cptr = get_token(cptr, buf);
switch(buf[0])

{
case 'b':
case *B':

cptr = get_token(cptr, buf);
if (stricmpfbuf, "a") == 0)

bat = BAT_A;
else if (stricmpfbuf, "b") == 0)

bat = BAT_B;
else if (buf[0] == NULL_CHAR)

(
tempw = eps_get_battery() ;
dprint("Battery Controls that are ON (0x%X):\n", tempw);
for (x = 0; x <= 15; x++)

if (tempw & (1<<X))

dprint!" %s", bat_sw [x]) ;
dprint("\n");
return;

}
else

{
dprintf'EPS cmd error: battery (%s) not recognized. \n", buf) ;
return;

)

cptr = get_token(cptr, buf);
if (stricmpfbuf, "c") == 0)

temp = BAT_CHARGE_ON;
else if (stricmp(buf, "d") == 0)

temp = BAT_DISCHARGE_ON;
else if (stricmpfbuf, "o") == 0)

temp = BAT_ONLINE;
else if (stricmpfbuf, "t") == 0)

temp = BAT_TRICKLE_ON;
else

(
dprintf'EPS cmd error: control (%s) not recognized. \n", buf) ;
return;

cptr = get_token(cptr, buf);
if (stricmpfbuf, "on") == 0)

266

eps_set_battery(bat, temp);
else if (stricmp(buf, "off") == 0)

eps_set_battery(bat, temp+1);
else

dprintCEPS cmd error: option (%s) error.: %s\n", buf);
break;

case ' c' :
case 'C:

cptr = get_token(cptr, buf);
if (stricmp(buf, "tmuxa") == 0)

dev = PWRJTMUXA;
else if (stricmp(buf, "tmuxb") == 0)

dev = PWR_TMUXB;
else if (stricmp(buf, "msa") == 0)

dev = PWR_MSA;
else if (stricmp(buf, "msb") == 0)

dev = PWR_MSB;
else if (stricmp(buf, "heata") -= 0)

dev = PWR_HEATA;
else if (stricmp(buf, "heatb") == 0)

dev = PWR_HEATB;
else if (stricmp(buf, "rf") == 0)

dev = PWR_RF;
else if (stricmp(buf, "antrel") == 0)

dev = PWR_ANTREL;
else if (buf[0] == NULL_CHAR)

{
tempw = eps_get_power0 ;
dprint("Subsystems that are ON (0x%X):\n", tempw);
for (x = 0; x <= 15; x++)

if (tempw & (l<<x))
dprint(" %s", ctrls [x]) ;

dprint("\n");
return;

}
else

(
dprintCEPS cmd error: subsystem (%s) not recognized. \n", buf) ,-
return;

)

cptr = get_token(cptr, buf);
if (stricmp(buf, "on") == 0)

eps_set_power(dev, ON);
else if (stricmp(buf, "off") == 0)

eps_set_power(dev, OFF);
else

dprintCEPS cmd error: power control syntax error: %s. \n", buf) ;
break;

case 'v':
case 'V :

cptr = get_token(cptr, buf);
if <(buf[0] == -A') || (buf[0] == 'a'))
(

bat = BAT_A;
n = atoi(&(buf+l));

)
else if ((buf[0] == 'B') || (buf [0] == 'b'))

{
bat = BAT_B;
n = atoi(&(buf+l));

}
else if <(buf[0] == 'S') || (buf[0] == 's'))
{

bat = BAT_NONE;
n = 0;

}
else if ((buf[0] == NULL_CHAR) || (temp < 0) | | (temp > 8))
{

dprintCEPS cmd error: voltage source (%s) not recognized. \n", buf)
return;

/* Setup the EPS MUXes via the PCB */
if (bat != BATJJONE)

{
if ((n >= 5))

pcb_write(EPS0, 3, bat_cmdl[bat][n]);
pcb_write(EPS0, 1, bat_cmd2 [bat] [n]) ;

267

dprint("Battery ");
if (bat == BAT_A)

dprint("A");
else

dprint("B");
dprint(" Cell # %d (accum.) ", n) ;

a = adr(4) ; /* EPS uses channel 4 of the A/D */
d = a;
d = 5.0*(d/4095) ;

dprint("%u (Ox%X) , %3.31f V -> %3.31f V\n", a, a, d, d/bat_cnv[bat] [n]) ;

else/* its the s/c bus */
{

dprint("S/C ");
pcb_write(EPSO, 1, OxFD);
a = adr(4); /* EPS uses channel 4 of the A/D */
d = a;
d = S.O*(d/4095);

dprint("%u (0x%X), %3.31f V -> %3.31f V\n", a, a, d, d*3.41);
}

break;

case 'i■:
case 'I' :

cptr = get_token(cptr, buf);
if ((buf[0] == 'A') || (buf[0] == 'a'))

bat = BAT_A;
else if <(buf[0] == 'B') || (buf[0] == 'b'))

bat = BAT_B;
else if ((buf[0] == 'S') || (buf[0] == 's'))

bat = BAT_NONE;
n = -1;

else if ((buf[0] == -P') || (buf[0] == 'p'))

bat = BAT_NONE;
n = atoi(&(buf+l));

else if (buf [0] == NULL_CHAR)

dprintCEPS cmd error: current (%s) not recognized. \n", buf);
return;

* Setup the EPS MUXes via the PCB */
f (bat -- BAT_NONE)

if (n -. -1) /• its the s/c bus */
(

pcb_write(EPSO, 3, 0x80);
b - eps_get_port2() | (BYTE)0x01; eps_set_port2 (b);
pcb_write(EPS0, 1, 0x30);
a- Jdr(4);
d « a;
dprint("S/C current = %u (0x%X), %.31f V -= %.31f mA\n",

a , a, d/819.0, 1000.0*((d*0.002442)-5.0));
I
el«'-
i

per write(EPSO, 3, i_sp_cmd[n]);
t. . eps_get_port2 () | (BYTE) 0x01; eps_set_port2 (b) ;
prtwrlte(EPSO, 1, 0x50);
a - adr (4) ;

d - a,

dprint CS/P:%d (#%d) current = %u (0x%X), %.31f V -> %.31f mA\n",
n, i_sp_tbl[n], a, a, d/819.0, 1000.0*(d*0.000488 - 1.0)),

)
else /• one of the batteries */
{

dprint("Battery ");
if (bat == BAT_A)

{
dprint("A") ;
pcb_write(EPSO, 3, 0x90);

268

}
else
{

dprint ("B") ;
pcb_write (EPSO, 3, OxAO) ;

}
b = eps_get_port2 () | (BYTE) OxOl; eps_set_port2 (b);
pcb_write(EPSO, 1, 0x3 0);
a = adr (4) ;
d = a;

/* Read the direction. */
n = pcb_read(EPSl, 1); /* Port 5 of the EPS */
if (bat == BAT_A)

temp = 0x01;
else

temp = 0x02;
sign = (temp & n) ? 1.0 : -1.0;
dprintt" current = %u (0x%X), %31f V ->%31f mA\n",

a, a, sign*(d/819.0), 1000.0*sign*((d*0.002442)-5.0)) ;

break;

case ' w':
case 'W :

eps_reset_wdog 0 ;
dprint("Watchdog timer reset.\n");
break;

default:
dprint("EPS cmd error.\n");
break;

} /* End of SWITCH */

} /* End of eps_cmd() */

*
* WORD adr ()
*

WORDadr oldlint ch)

{
unsigned int c, value, isr, temp, value_save;
double x;

outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw(AD_CONFIG, 0x0008); /* Full Calibration */
while (inpw(AD_CONFIG) L 0x0008) /* Wait for calibration to finish */

outpw(AD_CONFIG. 0x0000) ; /* Stop sequencer, point to RAM 00 */

/* DCS Temperature, MUX- . IN0, MUX- = GND */
outpw(AD_INSTR0. OxF200); /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- =Gnd, Vin+ =IN0 */
/* Pause = NO, loop = NO */

/* Modem Temperature. MUX» - INI, MUX- = GND */
outpw(AD_INSTR1. 0xF204); /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- =Gnd, Vin+ =IN1 */
/* no pause, loop = NO */

/* TMUXA, MUX- » IN4, MUX- = GND */
outpw(AD_INSTR2, 0xF210); /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin-= Gnd, Vin+= IN4 */
/* no pause, loop = NO */

/* TMUXB, MUX+ = IN6, MUX- = GND */
outpw(AD_INSTR3, 0xF218) ; /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- =Gnd, Vin+ =IN6 */
/* no pause, loop = NO */

269

/* EPS, MUX+ = IN2, MUX- = GND */
outpw(AD_INSTR4, 0xF208); /* acq. time = full way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- =Gnd, Vin+ =IN1 */
/* no pause, loop = NO »/

/* Dummy instruction to PAUSE */
outpw(AD_INSTR5, 0xF2 02) ;

/* RAN 01(1) and 10(2) are not set - limit stuff */

/* Timer to slow the conversion rate */
outpw(ADJTTMER, 1000);

outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw(AD_C0NFIG, 0x0001); /* start sequencer */

/* Wait for INT 5 - Pause Interrupt */
while (! inpw (AD_ISR & 0x0020))

/* Sequencer is stopped, due to Pause in last instruction */

/* Wait for 5 samples in the FIFO */
while (((inpw(AD_ISR) & OxFBOO) >> 11) < 5)

c = (inpw(AD_ISR) & OxFBOO) >> 11;
while (c)

{
value = inpw(AD_FIFO);

if (((value&OxEOOO)>>13) == ch)
value_save = value & OxOFFF;

c--;

}

return (value_save) ;

} /* End of adr() */

*
* tmux_cmd{)
*

voidtmux_cmd(char *cptr)
{

charbuf [10] ,-
int ch;
WORD a ;
double x;

cptr = get_token(cptr, buf) ,-
switch (buf [0])

f
case 'a':
case 'A':

cptr = get_token(cptr, buf) ;
if (stricmp(buf, "on") == 0)

eps_set_power (PWRJTMUXA, ON) ;
else if (stricmp(buf, "off") == 0)

eps_set_power (PWRJTMUXA, OFF) ;
else

{
ch = atoi(buf);
if ((ch < 0) || (ch > 31))

{
dprint("TMUX: bad cmd (%s)\n", buf);
return,-

}

pcb_write (TMUXA, 0, 0x10 + ch) ;
a = adr(2);
x = a;

270

x = (x/4095.0)*5.0;
dprint ("TMUXA Channel %d: %u (OxirX) , %3.31f V -> %d C",

ch, a SL OXOFFF, a & OxOFFF, x, cnv_therm(a)) ;

break;

case 'b':
case 'B':

cptr = get_token(cptr, buf);
if (stricmp(buf, "on") == 0)

eps_set_power (PWR_TMUXB, ON) ;
else if (stricmp(buf, "off") == 0)

eps_set_power (PWR_TMUXB, OFF);
else

{
ch = atoi(buf);
if ((ch < 0) || (ch > 31))

(
dprint ("TMUX: bad cmd (%s)\n", buf),-
return;

}

pcb_write(TMUXB, 0, 0x10 + ch) ;
a = adr(3) ;
x = a;
x = (x/4095.0)*5.0;
dprint ("TMUXB Channel %d: %u (0x%X) , %3.31f V -> %d C",

ch, a & OxOFFF, a & OxOFFF, x, cnv_therm(a)) ;

}
break;

default:
dprint("TMUX: bad MUX (%s).\n", buf);

}

} /* End of tmux_cmd() */

/***

* tlm_cmd()

voidtlm_cmd(char *cptr)

f
int i ;
BYTE*ptr = (BYTE *)&tlm_record;

serial_out(CTRL_X);
for (i = 0; i < sizeof (tlm__record_struct) ; i++)

serial_out(*ptr++);

/* End of tlm_cmd() */

/**+*****+*******+***#**

*
* read_eps_ad()
*
**/

unsigned int read_eps_ad(void)

{
outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw(AD_CONF!G, 0x0008); /* Full Calibration */
while (inpw(AD_CONFIG) & 0x0008) /* Wait for calibration to finish */

/* EPS, MUX+ = IN2, MUX- = GND */
/* OUtpw(AD_INSTR0, 0XF269); */ /* Vin- = IN3, Vin+ = IN2 */
outpw(AD_INSTR0, 0xF209) ; /* acq. time = 1/2 way, no wdog, 12-bit, */

/* Timer ON, NO sync, Vin- =Gnd, Vin+ =IN2 */
/* no pause, loop = YES */

/* Timer to slow the delay before acquisition and consequent conversion */
OUtpw(AD_TIMER, 1000) ; /* 32 clocks * 1000 = - 4 msec */

271

outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw(AD_CONFIG, 0x0001); /* start sequencer */

/* Wait for INT 5 - Pause Interrupt */
while (! inpw (AD_ISR & 0x0020))

/* Sequencer is stopped, due to Pause in last instruction */

/* Wait for 1 sample in the FIFO */
while (((inpw(AD_ISR) & 0xF800) >> 11) < l)

return!inpw(AD_FIF0) & OxOFFF);

} /* End of read_eps_ad() */

*
* adr()
*

unsigned int adrfint ch)

{
int n, i;
unsigned int total;

outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

outpw (AD_CONFIG, 0x0008); /* Full Calibration */
while (inpw(AD_CONFIG) & 0x0008) /* Wait for calibration to finish */

outpw(AD_CONFIG, 0x0000); /* stop sequencer, point to RAM 00 */

/* Loop Bits set for all */
n = 1;
switch(ch)

{
case 0: /* DCS: Single-ended, Vin+ = IN0 */

outpw(AD_INSTR0, 0xF200);
outpw(AD_INSTR1, 0xF202);
break;

case 1: /• MODEM: Single-ended, Vin+ = INI */
outpwIADINSTRO, 0XF2 04);
outpw(AD_1NSTR1, 0XF202);
break;

case 2: /• TMUXA: Single-ended, Vin+ = IN4 */
outpw(AD_INSTR0, OXF210);
outpwIADINSTRl, 0XF202);
break;

case 3: /• TKUXB: Single-ended, Vin+ = IN6 */
outpw (AI)INSTRC, 0XF218);
outpw(AD_INSTK1, 0XF202);
break;

case 4: .'• EIS: Single-ended, Vin+ = IN2 */
outpw (AI_ imrmz , 0xF208) ;
outpw (AI) Zurrt.:. 0XF202) ;
break,

default:
return(0;.
break ,■

} /* End of SWITCH •/

/* Timer to slow the delay before acquisition and consequent conversion */
outpw (ADJTIMER, 1000); /. 32 clocks * 1000 = - 4 msec */

outpw(AD_CONFIG, 0x0002); /* Reset the A/D */
while (inpw(AD_CONFIG) & 0x0002) /* Wait for Reset bit to clear */

272

outpw(AD_CONFIG, 0x0001); /* start sequencer */

/* Wait for INT 5 - Pause Interrupt */
while (!inpw(AD_ISR & 0x0020))

/* Sequencer is stopped, due to Pause in last instruction */

/* Wait for n sample(s) in the FIFO */
while (((inpw(AD_ISR) & 0xF800) » 11) < n)

if (n == 1)
return(inpw(AD_FIF0) & OxOFFF);

else

for (total = 0, i = 0; i < n; i++)
total += inpw (AD_FIF0) & OxOFFF;

return(total/n);

/* End of adr() */

/♦••it***

*
* sbutdown_cmd()
*
fr***/

voidshutdown_cmd(char *cptr)

/* Battery A control, TMUXA, HEATA */
/* Other subsystem power */
/* Battery B control */

pcb_write(EPS0, 0, 0)
pcb_write(EPS0, 2, 0)
pcb_write(EPS1, 2, 0)

serial_out (CTRL_V) ;

while (1)

} /* End of shutdown_cmd() */

*
* bcm_cmd()
*

voidbcm_cmd (char *cptr)

{.
charbuf [10] ;
int ch;
WORD a;
double x;

cptr = get_token(cptr, buf);

if (stricmp(buf, "on") == 0)
bcm_on = TRUE;

else if (stricmp(buf, "off") == 0)
bcm_on = FALSE;

else

{
dprint("Battery Charge Monitor is ");
if (bcm_on)

dprint("ON.\n");
else

dprint("OFF.\n") ;
}

} /* End of bcm_cmd() */

End of stpi.h, stpi.c

273

terms.h, terms.c

* TERMS.H

* Routines for terminal manipulation.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)

* Revision History:
* =================
* Date Who What
* 1 .

* 13 August 1991 Jah Creation
* 11 Oct 1991 Jah Flight terminal routines (assume printer)
* 2 Nov 1993 Jah Adopted for DCS
*

«ifdef TERMS
#endif

«ifndef TERMS
extern void clr(void);
extern void home(void);
extern void mov_xy(int , int);
extern void erase_to_eol(void);
extern void movjb(int);
extern void mov_f(int)
extern void mov_u(int);
extern void mov_d(int);

#endif

* TERMS.C
*
* Routines for terminal manipulation.

* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* Date who What
* i .

* 13 August 1991 Jah Creation

* 11 Oct 1991 Jah Flight terminal routines (assume printer)
* 2 Nov 1993 Jah Adopted for DCS
*

«include "gen_defs.h"

#define TERMS
«include "terms.h"
ttundef TERMS

«include "print.h"
«include "seen"

/.•.•Ht.ttJHUHtltHlHtttllttHtltHHUmttKmmilJtmJtlHUHUHl

* clr()

*******t*tt**tt**ii*t********t*t**tt**t*t*t****t**ttti***t*t****t**t*

void clr(void)
(

274

serial_out(Oxlb)
serial_out(0x5b)
serial_out(0x32)
serial out(0x4a)

/* ESC */
/* [*/
/* 2 */
/* J */

} /* End of clrO */

* erase_to_eol()
*

void erase_to_eol(void)

{
serial_out(OxOD) ;

serial_out(OxlB);
serial_out('T');

} /* End of erase_to_eol() */

*
* home()
*

void home()

{
serial_out(Oxlb)
serial_out(0x5b)
serial_out(0x3b)
serial_out(0x48)

} /* End of homeO

/* ESC */
/* [*/
/* ; */
/* H */

*
* mov_b() - Moves cursor back x characters "ESC[#D"

void mov_b(int x)

{
while(x--)
serial_out(0x28) ;

} /* End of mov_b() */

*

* mov_f () - Moves cursor forward x characters "ESC[#C"
*

void mov_f(int x)

{

while(x--)
serial__out{0x2C);

} /* End of mov_f<) */

*
*
* mov_u() - Moves cursor up x rows "ESC[#A"
*
*

void mov_u(int x)
{

while(x--)
serial__out (0x2B) ;

275

} /* End of mov__u{)*/

/**+#****#4+^+#
*
*
* mov_d() - Moves cursor back x characters "ESC[#B"

******************* ***/

void mov_d(int x)

{
while(x--)
serial_out(0x2A);

} /* End of mov_d() */

*
* mov_xy()
*
• lumnitmntitumtnimiimimmjutHtmij,,,,,,,,,,,,,,,,,,,,, /

void mov_xy(int x, int y)
{

serial_out(OxlB);
serial_out(' = ');
serial_out((BYTE)(• ' + y - 1));
serial_out((BYTE) (' ' + x - 1)) ;

} /* End of mov_xy() */

End of terms.h, terms.c

276

tlm.h, tlm.c
/***

* TLM.H

* Data types and equates for Pansat Telemetry.
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* who when what
* + +

* Jah 9 June 95 Creation (hardware sensors)
* Jah 27 June 95 Software sensors
* Jah 26 April 96 Adopted for ROM Startup

#define NUMJTS 64 /* Number of Thermistors */
#define NUM_TM 2 /* Number of IC Temperature Sensors */
#define NUM_BAT_CELLS 9 /* Number of Battery cells (per battery) */
#define TOP_CELL 8
#define NUM_SP 8 /* Number of Solar Panel Current Sensors */

/* Jah */
#define NUM_SETS 14 /* Number of Sets in Sequencer Instruction Table */
#define CURRENTS_SAMPLED 5 /* Number of currents sampled per complete A/D sweep */

#define TLM_RECORD_TIME (TWO_MINUTES)

/***
*
* PANSAT Hardware Sensors for ROM Startup.

* This structure can be used both for the raw data read from the
* LM12458 A/D converter (12-bit values reflecting a voltage reading),
* as well as converted values in the appropriate units needed for
* decision making routines.
*
**/

typedef struct sensors

{
/* Thermistors */
unsigned int ts[NOM_TS];

/* IC Temperature Sensors */
unsigned int tmp [NUM_TM] ;

/* Voltages */
unsigned int vbatta [NUM_BAT_CELLS] ;
unsigned int vbattb [NUM_BAT_CELLS] ,-
unsigned int vscbus;

/* Currents */
unsigned int ibatta [CURRENTS_SAMPLED] ,- /* over the 42 periods */
unsigned int ibattb [CURRENTS_SAMPLED] ; /* over the 42 periods */
unsigned int iscbus [CURRENTS_SAMPLED] ; /* over the 42 periods */
unsigned int isolar[NUM_SP] ;

sensors struct;

typedef struct cnv_sensors

{
/* Thermistors */
signed char ts[NUM_TS];

/* IC Temperature sensors */
signed char tmp[NUM_TM];

/* Voltages */
double vbatta;
double vbattb;
double vcellsa[NUM BAT CELLS],

277

double vcellsb [NDM_BAT_CELLS] ;
double vcellsa_avg;
double vcellsb_avg;
double vscbus;

/* Currents */
double ibatta;
double ibattb;
double iscbus;
double isp[NUM_SP] ;

} cnv__sensors_struct;

***************** tt************************************

* PANSAT Hardware Configuration

** **************************

/* hw_cfg_struct holds software configuration information regarding
* hardware systems which is to be recorded to the mass storage unit and
* available for downloading along with recorded hardware sensors
*/

typedef struct hw_cfg

{
unsigned char
unsigned char
unsigned char

} hw_cfg_struct;

epscfg[3]; /* Ports 0, 2, and 6 */
pmaxcfg[19]; /* Paramax regsiters + h/w status */
rfcfg; /* RF configuration */

/* Indexing into pmaxcfg[] */
#define PM AGC STATUS 1 0 /*
«define PM IPFI H 1 /*
«define PM IPFI L 2 /*
#define PM QPFI H 1 /*
#define PM QPFI L 4 /*
#define PM TM CMD 0 S /*
#define PM TM CMD 1 6 /*
#define PM TM CMD 2 7 /*
#define PM TM CMD 3 8 /*
#define PM PH CMD 0 9 /*
#define PM PH CMD 1 10 /*
#define PM PH CMD 2 11 /*
#define PM PH CMD 3 12 /*
#define PM PNCA L 13 /*
#define PM PNCA H 14 /*
#define PM PNCS L 15 /*
#define PM PNCS H 16 /*
#define PM PNG 17 /*
#define PM_HW 18 /*

/* Indexing into epscfgpt] */
«define EPS_PORT0 0
#define EPS_PORT2 1
«define EPS PORT6 2

AGC Status */
I Prefilter High Byte */
I Prefilter Low Byte */
Q Prefilter High Byte */
Q Prefilter Low Byte */
Time 32 bit frequency command (LSB) */
Time 32 bit frequency command */
Time 32 bit frequency command */
Time 32 bit frequency command (MSB) */
Phase 32 bit frequency command (LSB) */
Phase 32 bit frequency command */
Phase 32 bit frequency command */
Phase 32 bit frequency command (MSB) */
PN Correlation Detector Accumulator (LSB) */
PN Correlation Detector Accumulator (MSB) */
PN Correlation Detector Slip Counter (LSB) */
PN Correlation Detector Slip Counter (MSB) */
PN Generator Status */
Paramax hardware interface register */

*********** ********************** *************************

* PANSAT Software Sensors/Configuration/Statistics

******************* ********* ******** ********** *******/

/* sw_cfg holds all software configuration information which reflects the current
* state of the satellite.
V

typedef struct sw_info

{
long
int

unsigned long int
unsigned long int
unsigned long int

unsigned long int
long
char far

} sw info struct;

tod; /* Current data: UTC since 1 Jan 1970 */
ver; /* os version */

passcount; /* Password counter */
suaccess; /* # of successful NPS accesses */
sufailed; /* # of failed NPS accesses */

softerr; /* EDAC: Soft Error count */
serrtod; /* EDAC: Time of last soft error */
serraddr; / EDAC: Current RAM Wash address */

278

hw_cfg_struct hw_cfg;

*
* Complete Pansat Telemetry (hardware and software)
*

/* For current (most recent, not stored to the mass storage unit) telemetry. */
typedef struct tlm_recent

{
sensors_struct sensors;

sw_info_struct sw_info;

DWORD etime; /* elapsed operating time */
DWORD tod; /* time/date */

} tlm_recent_struct;

/* For stored telemetry (in mass storage unit).
*
* The data stream containing stored telemetry is a series of these structures
* of which the size is given before the data download begins.
*/

typedef struct tlm_record

{
sensors_struct sensors;

bcm_info_struct bcm;
DWORD etime; /* elapsed operating time */
DWORD tod; /* time/date */

/* Jah */
/* hw_cfg_struct hw_cfg; */

WORD crc;

} tlm_record_struct;

ttifdef TLM
/* Defines for conversion routines */
tdefine THERM_LOW -31
»define THERM_HIGH 88
«define THERM_TAB_SIZE ((THERM_HIGH - (THERM_LOW)) + 1)

void convert_ad (void) ;
int cnv therm(WORD n);

#endif

#ifndef TLM
extern void convert_ad (void) ;
extern int cnv_therm(WORD n);

extern void check_tlm(void);

extern cnv_sensors_struct tlm_cnv;

/* Storage for the most recent TLM gathering from the A/D. These are
* raw data points.

*/
extern tlm_recent_struct tlm;

/* Define storage for the data to be recorded to the mass storage units.
*/

extern tlm_record_struct tlm_record;
#endif

279

/***
*
* TLM.C
*
* Petite Amateur Navy Satellite (PANSAT).
* Embedded ROM software.
* Copyright (c) 1996 Space Systems Academic Group, Naval Postgradate School.
* Jim A. Horning (Jah)
*
* Revision History:
* =================
* who when what

Jah 30 April 96 Creation

** fr****************/

#include "gen_defs.h"

#include "bcm.h"

#define TLM
#include "tlm.h"
#undef TLM

tinclude "ad.h"
#include "clock.h"
tfinclude "pcb.h"

/* Define storage for the most recent TLM gathering from the A/D. These are
* raw data points.

*/
tlm_recent_structtlm;

/* Define storage for the data to be recorded to the mass storage units.
*/

tlm_record_structtlm_record;

/* Define storage for converted tlm values for decision making.
*/

cnv sensors struct tlm cnv;

/* Starting addresses to begin recording telemetry records to Flash
static DWORD msaf_tlm_ptr = 0;
static DWORD msbf_tlm_ptr = 0;

3512, 3313, 3127, 2952, 2788, 2634, 2490

1993, 1887, 1787, 1693, 1604, 1520, 1442

1169, 1110, 1055, 1002, 953, 906, 862,

/* Conversion factors for telemetry sensors into cnv_sensors */
/* Thermistors: This table begins for the temperature beginning
* at -31 C, and working up per degree C. The table is used
* in a binary search. Table entries are used as follows:
* If the A/D value is 4000, then the temperature considered
* to be -30C, because it is less than the first entry in the
* table, 4191, which corresponds to -31C.
V

static const int cnv_therm_tab [THERM_TAB_SIZE] =

{
/* -31 -> -22 */
4191, 3949, 3723,
/* -21 -> -12 */
2354, 2226, 2106,
/* -n _> _2 */

1368, 1298, 1231,
/* -1 -> 8 */
820, 780, 743, 707, 673, 642, 611, 583, 556, 530,
/* 9 -> 18 */
506, 482, 461, 440, 420, 401, 383, 366, 350, 335,
/* 19 -> 28 */
320, 306, 293, 281, 269, 257, 246, 236, 226, 217,
/* 29 -> 38 */
208, 199, 191, 183, 176, 169, 162, 156, 150, 144,
/* 39 -> 48 */
138, 133, 127, 123, 118, 113, 109, 105, 101, 97,
/* 49 -> 58 */
94, 90, 87,
/* 59 -> 68 */
65, 62, 60,
/* 69 -> 78 */
46, 44, 43,
/* 79 -> 88 */
33, 32, 31,

84, 81, 78, 75, 72, 70, 67,

58, 56, 54, 52, 51, 49, 47,

41, 40, 38, 37, 36, 35, 34,

30, 29, 28, 27,

280

26, 25, 24

/* Voltages */
static const double cnvjvbatts [BCM_NUM_BATS] [BCM_NUM_CELLS] =

(
{l.0*AD_RES, 1.0*AD_RES, 1.90476*AD_RES, 1.90476*AD_RES, 1.90476*AD_RES,
4.7S191*AD_RES, 4.76191*AD_RES, 4.76191*AD_RES, 4.76191*AD_RES),
{l.0*AD_RES, 1.0*AD_RES, 1.90476*AD_RES, 1.9047S*AD_RES, 1.90476*AD_RES,
4.76191*AD_RES, 4.76191*AD_RES, 4.76191*AD_RES, 4.76191*AD_RES}

};

#define CNV_VSC (3 .41*AD_RES)

/* Currents */
#define CNV_IBATTS (2.0*ADJRES)
#define CNV_ISC (2.0*AD_RES)
#define CNV_ISP (2.0*AD_RES)

*
* void convert_ad ()
*
* Take all A/D raw values stored in the telemetry structure, .sensors
* substructure, and convert it to floating point values that are in the
* correct units for higher-level control routines.
*

void convert_ad (void)

{
register int i;
double vbatta[NUM_BAT_CELLS];
double vbattb[NUM_BAT_CELLS];
double ia, ib, isc;

/* Convert Thermistors */
for (i = 0; i < NUM_TS; i++)

tlm_cnv.ts[i] = cnv_therm(tlm.sensors.ts[i));

/* Convert Temperature Sensors */
for (i = 0; i < NUM_TM; i++)

tlm_cnv.tmp [i] = (tlm.sensors.tmp[i]*AD_RES - 0.5)*100.0;

/* Convert Voltages: Battery A, Battery B, and SC Bus */
/* These are accumulated cell voltages. Individual converted
* accumulated values are not necessary to keep, only to use
* to obtain the individual cell voltages.
*/

for (i = 0; i < NUM_BAT_CELLS; i++)

{
vbatta[i) - t lrr . sensors .vbatta [i] * cnvjvbatts [0] [i] ;
vbattb[i) • tlm.sensors.vbattb[i] * cnv_vbatts[1] ti] ;

}
tlm_cnv.vbatta - vbatta (TOP_CELL] ;/* Battery Total Voltage is same as top cell voltage */
tlm_cnv.vbattb - vbattb[TOP_CELL];

/* These are individual cell voltages */
tlm_cnv.vcellsa|C! • vbatta[0];
tlm_cnv.vcellsb;c) . vbattb[0];
for (i = 1; l « NIW BAT CELLS; i++)

{
tlm_cnv.vcei lsa '. i! • vbatta[i] - vbatta [i-1] ,■
tlm_cnv.vcel1st!l; - vbattb [i] - vbattb[i-l];

tlm_cnv. vcel lsa ava ♦- tlm_cnv.vcellsa [i] ,-
tlm_cnv. vcfr'. 1 ut avg ♦- tlm_cnv.vcellsb [i] ;

}
tlm_cnv.vcellsa_av-n ,. NUM_BAT_CELLS ;
tlm_cnv.vcellsb_«vg /■ KUM_BAT_CELLS;

/* The spacecraft voltage */
tlm_cnv.vscbus - tlm.sensors.vscbus * CNV_VSC;

/* Convert Currents: Battery A, Battery B, SC Bus */
for (ia = ib = isc = 0.0, i = 0; i < CURRENTS_SAMPLED; i++)

{
if (tlm.sensors.ibatta[i] & 0x8000)

ia += -1.0* (((tlm. sensors, ibatta [i] & OxOFFF) *CNV_IBATTS) - S.0);
else

281

ia += (tlm. sensors, ibatta [i] & OxOFFF)*CNV_IBATTS - 5.0;

if (tlm.sensors.ibattb[i] & 0x8000)
ib += -1.0* (((tlm.sensors.ibattb[i] & OxOFFF)*CNV_IBATTS) - 5.0);

else

ib += (tlm.sensors.ibattbfi] & OxOFFF)*CNV_IBATTS - 5.0;

isc += (tlm.sensors.iscbus[i] * CNV ISC) - 5.0;

}
tlm_cnv.ibatta = la/CURRENTS_SAMPLED;
tlm_cnv. ibattb = ib/CÜRRENTS_SAMPLED;
tlm_cnv. iscbus = isc/CURRENTS_SAMPLED;

/* Call Battery Charge Monitory V, I, and Temperature data updater. */
/* Jah */
/* bcm_tlm_update() ; */

} /* End of convert_ad() */

*
* signed char cnv_therm()

* Convert A/D value for thermistor reading into a temperature (Celcius)
* using table look up for approximation. A binary search is used to
* speed up the look up process.
*

int cnv_therm(unsigned int sample)

{
register int mid, start, end;

start = 0;
end = THERM_TAB_SIZE-1;

/* First see if the sample is less than the smallest table
* value. If so, this corresponds to a temperature greater
* than that corresponding temperature.
*/

if (sample < cnv_therm_tab [THERM_TAB_SIZE-1])
return(THERM_HIGH + 1);

/* Otherwise, the lookup will return the closet temperature,
* including a temperature below the lowest in the table.
*/

while ((end - start) > 1)

{
mid = (end + start)/2;

if (sample == cnv_therm_tab [mid])
break;

else if (sample < cnv_therm_tab [mid])
start = mid;

else
end = mid;

if ((end - start) > 1)
return (THERM_LOW + mid) ;

else

{
if ((cnv_therm_tab [start] - sample) <= (sample - cnv_therm_tab [end]))

return(THERM_LOW + start);
else

return(THERM_LOW + end);
)

} /* End of cnv_therm() */

*
* void check_tlm ()
*
* Check to see if the A/D acquisition has completed another sensor sweep,
* and if so convert the sensor data into a recent tlm record. In addition,
* check to see if it is time to store the record to mass storage (Flash) .
*
**

282

vo i d ehe ck_t Im (vo i d)

{
static DWORD t= OL;

ad check {);

if {samples_ready)

{
ad_collect 0 ;
convert_ad() ;

memepy(&tlm_record. sensors, &tlm.sensors, sizeof (sensors_struct)) ;

tlm.etime = get_elapsed_time () ;
tlm.tod = get_time();
tlm_record.etime = tlm.etime;
tlm_record.tod = tlm.tod;

bcm_info(&tlm_record.bcm);

if ((get_elapsed_time() - t) > TLM_RECORD_TIME)
msu_save tlm(tlm record);

} /* End of check_tlm() */

End of tlm.h, tlm.c

283

284

APPENDIX K. TEST PLANS

This appendix contains the System Controller tests that were followed while evaluating the hardware and

software.

Board Stuffing Tests (SC Hardware)
• Check distirbution of PCB logic power when board powered off.

• Check output voltage of DC-DC converter for regulated board power.

• Verfiy power on sensing circuitry.

• Check bus isolation buffers (54HC125).

• Verify clock from crystal oscillator.

• Check microprocessor Reset circuit.

• Verify microprocessor CLKOUT.

• Check power and ground to all ICs.

• Record current sinked to board.

• Verify CLKIN to all clocked ICs.

• Verify connectors.

• Verify signal filters to A/D inputs (RC-diode circuit).

Circuit Evaluation (SC Hardware and Software Device Drivers)
• Attach in-circuit emulation system.

• Perform and verify microprocessor Reset and microprocessor initialization.

• Test asynchronous mode of the SCC (use RS-232 terminal on other end).

• Check data and address buffers.

• Verify external interrupts are acknowledged by microprocessor.

285

• Test memory and chip selects for ROM, EDAC, and peripherals.

• Enable and verify EDAC via tests written for Oechsel [Ref. 21]. Include new test for EDAC reset and

modified write back.

• Check power switching to Modem board (using the TPS2013).

• Test manual mode of the 82C55.

• Verify PCB write and read.

• Test manual mode of the LM12H458.

• Test conversion of IC temperature probe (LM50) into A/D.

• Enable SCC port A synchronous and check for Flag detection and creation.

Further Device Driver Tests (SC hardware and software)
• Verify Startup code: CPU init, peripheral init, memory check and clear, stack setup, floating point

emulation init, passing control to main().

• Test clock generator.

• Test interrupt receive and acknowledge for multiple ISR operation.

• Check EDAC RAM wash chained into the clock generator.

• Verify SCC port B asynchronous modes (9.8, 19.2, and 38.4 kbits/sec).

• Check packet passing into Modem interface using SCC port B.

• Check terminal emulation and high-level print out display.

• Test STPI high-level command interface.

• Check PCB read and write routines (both non-interruptable and re-entrant routines).

• Test EPS control.

• Test TMUX channel select capability.

• Test A/D ISR for data acquisition.

• Test A/D data conversions.

286

• Verify Mass Storage SRAM and Flash read and write operations.

High-Level Software Tests (SC software)
• Check detection of STPI during bootup.

• Check telemetry saving and retrieving to and from the Mass Storage.

• Check Mass Storage Flash for recorded telemetry to allow for state preservation with system operations.

• Verify Battery Charge Monitor: ported from Lab VIEW system. Single battery only (A, then B), dual

battery (A and B), full charge, charge with solar simulation, maintaining battery charges, battery

discharges, environmental tests, autonomous control for long periods (1 day, 3 day, 1 week).

• Check CRC generation and verification for saved telemetry to Mass Storage.

• Test RF control.

• Check software upload and transfer of control routines (allows new software to be loaded, including

SCOS).

• Test interface for commands sent through the RF interface.

• Check stored telemetry download and erase.

• Verify scenario checking routines for anomolies.

287

288

LIST OF REFERENCES

1 "PANSAT Functional Requirements," SSD-S-SY-000, Space Systems Academic Group, Naval
Postgraduate School, date Draft.

2 Johnson Space Center, NASA FAX, Subject: Space Shuttle Altitudes and Inclinations, April 1994.

3 Davinic, Nicholas M., "Evaluation Of The Thermal Control System Of The Petite Amateur Navy
Satellite (PANSAT)," Master's Thesis, Naval Postgraduate School, Monterey, CA, September
1995.

4 Messenger, G.C. and Ash, M.S., The Effects of Radiation on Electronics Systems, Van Nostrand
Reinhold, New York, NY, 1991.

5 Adams, Leonard, et al., "Proton Induced Upsets in the Low Altitude Polar Orbit, " IEEE
Transactions on Nuclear Science, Vol. 36, No. 6, pp. 2339 - 2343, 1989.

6 Shimano, Y. T., et al., "The Measurement and Prediction of Proton Upset," IEEE Transactions on
Nuclear Science, Vol. 36, No. 6, pp. 2344 - 2348, 1989.

7 "Space Product News, Special Edition, Integrated Circuits For The Space Environment," Harris
Semiconductor BR-035, Harris Semiconductor, September 1993.

8 Kernigan, B. W., Ritchie, D. M., The C Programming Language, Prentice-Hall, Englewood
Cliffs, N.J., 1978.

9 Harbison, S.P., Steele, G. L., C A Reference Manual, Prentice-Hall, Englewood Cliffs, N.J., 1991.

10 CMOS Logic Selection Guide, Harris Semiconductor, Melbourne, FL, 1994.

11 Embedded Microcontrollers And Processors Volume II, Order Number 270645, Intel Corporation,
Mount Prospect, IL, 1992.

12 80C186/C188 80C186XL/C188XL Users Manual, Order Number 272164-001, Intel Corporation,
Mount Prospect, IL, 1992.

13 "Embedded Intel 186 Microprocessor Family Frequently Asked Questions",
http://developer.intel.com/design/faq/186faqs.htm, Intel Corporation, 1996.

14 "ICL8211, ICL8212 Programmable Voltage Detectors," Harris Semiconductor, AnswerFax Data
Sheet 3184.1, 1992.

15 "Maxim 5V, Step-Down, Current-Mode PWM DC-DC Converters," Maxim 1995 New Release
Data Book, Volume IV, Maxim Integrated Products, 1995.

16 "82C55A CMOS Programmable Peripheral Interface," Harris Semiconductor AnswerFax 2969,
Harris Semiconductor, 1992.

17 "PA-100 Spread Spectrum Demodulator ASIC, Technical Data Sheet and User's Guide Rev.0,"
Paramax, Salt Lake City, UT, 1993.

18 "TPS 2010/TPS 2012/TPS 2013 Power Distribution Switches," Texas Instruments Data Sheet
SLV097, Texas Instruments, 1994.

19 "M27C256 256k (32k x 8) CHMOS UV Erasable PROM," Intel Corporation Data Sheet 271008-
067, 1992.

20 Dataman S4 User Manual, Dataman Programmers Ltd., Orlando, FL.

289

21 Oechsel, C. R, "Implementation Of Error Detection And Correction (EDAC) In The Static
Random Access Memory (SRAM) Aboard Petite Amateur Navy Satellite (PANSAT)," Master's
Thesis, Naval Postgraduate School, Monterey, CA, 1995.

22 "ASC630MS Radiation Hardened EDAC," Harris Semiconductor AnswerFax 2100, Harris
Semiconductor, 1992.

23 "256k x 8 CMOS SRAM MSM8256-25/35/45/55," Mosaic Semiconductor Data Sheet Issue 2.2,
Mosaic Semiconductor, 1993.

24 "LM12454/LM12H454/LM12458/LM12H458 12-Bit + Sign Data Acquisition System With Self-
Calibration," National Semiconductor Data Sheet, National Semiconductor, 1995.

25 "LM12458 12-Bit Plus Sign Data Acquisition System with Self-Calibration",
http://www.nsc.com/pf/LM/LM12458.html, National Semiconductor, 1996.

26 "DG411, DG412, DG413 Monolithic Quad SPST CMOS Analog Switches," Harris
Semiconductor AnswerFax Data Sheet 5282.1, Harris Semiconductor, 1993.

27 "LM50B/LM50C SOT-23 Single-Supply Centrigrade Temperature Sensor," National
Semiconductor Data Sheet, National Semiconductor, 1995.

28 Am8530H/Am85C30 Serial Communication Controller Technical Manual, Advanced Micro
Devices, Sunnyvale, CA, 1992.

29 "Maxim ± 15 kV, ESD-Protected, +5V RS-232 Transceivers," Maxim 1995 New Release Data
Book, Volume IV, Maxim Integrated Products, 1995.

30 Amateur Radio Relay League, AX.25 Amateur Packet-Radio Link-Layer Protocol (Version 2.0),
Washington D.C., 1984.

31 Price, H. E., SCOS Reference Manual, BekTek Corporation, Bethel Park, PA, 1992.

32 Price, H. E., AX-25 Reference Manual, BekTek Corporation, Bethel Park, PA, 1992.

33 Price, H. E., Ward, J., "PACSAT Protocol Suite," Proceedings Of The ARRL 9th Computer
Network Conference, ARRL, Newington, CT, 1990.

34 Writing ROMable Code in Microsoft C, Systems And Software, Inc., Irvine, CA, 1990.

35 Link AndLocate++, Systems And Software, Inc., Irvine, CA, 1990.

36 Lahti, C. A., "The Design Of The Radio Frequency (RF) Subsystem Printed Circuit Boards For
The Petite Amateur Navy Satellite (PANSAT)," Master's Thesis, Naval Postgraduate School,
Monterey, CA, 1996.

37 Horning, J., and Sheltry, J, "An Analog-to-Digital Acquisition System for PANSAT,", Space
Systems Academic Group, 1993.

38 The Temperature Handbook, Volume 28, Omega Engineering, Stamford, CT, 1992.

39 Flash Memory Products, Advanced Micro Devices, Sunnyvale, CA, 1994.

40 McNamara, J. E., Technical Aspects Of Data Communications, Digital Press, Bedford, MA, 1982.

41 Strewinsky, F. H., "PANSAT Prototype Battery Test And Test Results," Research Report, Naval
Postgraduate School, Monterey, CA, 1996.

290

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Department Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Department Chairman, Code SP..
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

5. Dr. Rudolf Panholzer, Code Sp/Pz.
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

6. Randy L. Wight, Code Sp/Wt
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

7. PANSAT Project Team, Code Sp..
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

Mr. and Mrs. Tony Horning.
25380 Vista del Pinos
Carmel, California 93923

Mr. James A. Horning, Code Sp/Jh.
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5110

291

